Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
DNA Repair (Amst). 2010 May 4;9(5):495-505. doi: 10.1016/j.dnarep.2010.01.014. Epub 2010 Mar 15.
Light-induced activation of class II cyclobutane pyrimidine dimer (CPD) photolyases of Arabidopsis thaliana and Oryza sativa has been examined by UV/Vis and pulsed Davies-type electron-nuclear double resonance (ENDOR) spectroscopy, and the results compared with structure-known class I enzymes, CPD photolyase and (6-4) photolyase. By ENDOR spectroscopy, the local environment of the flavin adenine dinucleotide (FAD) cofactor is probed by virtue of proton hyperfine couplings that report on the electron-spin density at the positions of magnetic nuclei. Despite the amino-acid sequence dissimilarity as compared to class I enzymes, the results indicate similar binding motifs for FAD in the class II photolyases. Furthermore, the photoreduction kinetics starting from the FAD cofactor in the fully oxidized redox state, FAD(ox), have been probed by UV/Vis spectroscopy. In Escherichia coli (class I) CPD photolyase, light-induced generation of FADH from FAD(ox), and subsequently FADH(-) from FADH, proceeds in a step-wise fashion via a chain of tryptophan residues. These tryptophans are well conserved among the sequences and within all known structures of class I photolyases, but completely lacking from the equivalent positions of class II photolyase sequences. Nevertheless, class II photolyases show photoreduction kinetics similar to those of the class I enzymes. We propose that a different, but also effective, electron-transfer cascade is conserved among the class II photolyases. The existence of such electron transfer pathways is supported by the observation that the catalytically active fully reduced flavin state obtained by photoreduction is maintained even under oxidative conditions in all three classes of enzymes studied in this contribution.
已经通过紫外/可见分光光度法和脉冲 Davies 型电子-核双共振(ENDOR)光谱研究了拟南芥和水稻的 II 类环丁烷嘧啶二聚体(CPD)光解酶的光诱导激活,结果与结构已知的 I 类酶,CPD 光解酶和(6-4)光解酶进行了比较。通过 ENDOR 光谱,通过质子超精细耦合来探测黄素腺嘌呤二核苷酸(FAD)辅因子的局部环境,该超精细耦合报告了磁性核位置处的电子自旋密度。尽管与 I 类酶相比,氨基酸序列存在差异,但结果表明 II 类光解酶中 FAD 的结合基序相似。此外,通过紫外/可见光谱研究了从完全氧化的氧化还原态 FAD(ox)开始的 FAD 辅因子的光还原动力学。在大肠杆菌(I 类)CPD 光解酶中,FAD(ox)从 FAD 生成 FADH,随后 FADH 从 FADH(-)生成,通过一系列色氨酸残基逐步进行。这些色氨酸在序列中以及在所有已知的 I 类光解酶结构中都得到很好的保守,但在 II 类光解酶序列的等效位置完全缺失。然而,II 类光解酶表现出与 I 类酶相似的光还原动力学。我们提出,在 II 类光解酶中保守了一种不同但同样有效的电子转移级联。这种电子转移途径的存在得到了支持,即在所有三种酶类中研究的氧化条件下,通过光还原获得的催化活性完全还原的黄素状态得以维持。