Suppr超能文献

涉及临床试验中缺失数据的组间比较:一些简单方法的估计值与效能(样本量)比较

Group comparisons involving missing data in clinical trials: a comparison of estimates and power (size) for some simple approaches.

作者信息

Miller M E, Morgan T M, Espeland M A, Emerson S S

机构信息

Section on Biostatistics, Department of Public Health Sciences, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1063, USA.

出版信息

Stat Med. 2001 Aug 30;20(16):2383-97. doi: 10.1002/sim.904.

Abstract

When using 'intent-to-treat' approaches to compare outcomes between groups in clinical trials, analysts face a decision regarding how to account for missing observations. Most model-based approaches can be summarized as a process whereby the analyst makes assumptions about the distribution of the missing data in an attempt to obtain unbiased estimates that are based on functions of the observed data. Although pointed out by Rubin as often leading to biased estimates of variances, an alternative approach that continues to appear in the applied literature is to use fixed-value imputation of means for missing observations. The purpose of this paper is to provide illustrations of how several fixed-value mean imputation schemes can be formulated in terms of general linear models that characterize the means of distributions of missing observations in terms of the means of the distributions of observed data. We show that several fixed-value imputation strategies will result in estimated intervention effects that correspond to maximum likelihood estimates obtained under analogous assumptions. If the missing data process has been correctly characterized, hypothesis tests based on variances estimated using maximum likelihood techniques asymptotically have the correct size. In contrast, hypothesis tests performed using the uncorrected variance, obtained by applying standard complete data formula to singly imputed data, can provide either conservative or anticonservative results. Surprisingly, under several non-ignorable non-response scenarios, maximum likelihood based analyses can yield equivalent hypothesis tests to those obtained when analysing only the observed data.

摘要

在临床试验中使用“意向性分析”方法比较组间结果时,分析人员面临如何处理缺失观察值的决策。大多数基于模型的方法可概括为一个过程,即分析人员对缺失数据的分布做出假设,试图获得基于观察数据函数的无偏估计。尽管鲁宾指出这种方法常常会导致对方差的有偏估计,但应用文献中仍经常出现的一种替代方法是对缺失观察值使用均值的固定值插补。本文的目的是举例说明如何根据一般线性模型来制定几种固定值均值插补方案,这些模型根据观察数据分布的均值来刻画缺失观察值分布的均值。我们表明,几种固定值插补策略将产生与在类似假设下获得的最大似然估计相对应的估计干预效果。如果正确刻画了缺失数据过程,基于使用最大似然技术估计的方差进行的假设检验渐近地具有正确的规模。相比之下,使用未校正方差进行的假设检验(通过将标准完全数据公式应用于单次插补数据获得)可能会提供保守或反保守的结果。令人惊讶的是,在几种不可忽略的无应答情况下,基于最大似然的分析可以产生与仅分析观察数据时获得的假设检验等效的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验