Eggert J, van Hemmen J L
Honda R&D, Europe (Deutschland) GmbH, Future Technology Research, 63037 Offenbach/Main, Germany.
Neural Comput. 2001 Sep;13(9):1923-74. doi: 10.1162/089976601750399254.
Models that describe qualitatively and quantitatively the activity of entire groups of spiking neurons are becoming increasingly important for biologically realistic large-scale network simulations. At the systems and areas modeling level, it is necessary to switch the basic descriptional level from single spiking neurons to neuronal assemblies. In this article, we present and review work that allows a macroscopic description of the assembly activity. We show that such macroscopic models can be used to reproduce in a quantitatively exact manner the joint activity of groups of spike-response or integrate-and-fire neurons. We also show that integral as well as differential equation models of neuronal assemblies can be understood within a single framework, which allows a comparison with the commonly used assembly-averaged graded-response type of models. The presented framework thus enables the large-scale neural network modeler to implement networks using computational units beyond the single spiking neuron without losing much biological accuracy. This article explains the theoretical background as well as the capabilities and the implementation details of the assembly approach.
能够定性和定量描述整个脉冲发放神经元群体活动的模型,对于具有生物学真实性的大规模网络模拟正变得越来越重要。在系统和区域建模层面,有必要将基本描述层次从单个脉冲发放神经元转换到神经元集群。在本文中,我们展示并回顾了能够对集群活动进行宏观描述的相关工作。我们表明,此类宏观模型可用于以定量精确的方式重现脉冲响应或积分发放神经元群体的联合活动。我们还表明,神经元集群的积分方程模型和微分方程模型都可以在一个单一框架内得到理解,这使得我们能够将其与常用的集群平均分级响应类型的模型进行比较。因此,所提出的框架使大规模神经网络建模者能够使用单个脉冲发放神经元之外的计算单元来实现网络,而不会损失太多生物学准确性。本文解释了集群方法的理论背景、能力以及实现细节。