Espinosa F, McMahon A, Chan E, Wang S, Ho C S, Heintz N, Joho R H
Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
J Neurosci. 2001 Sep 1;21(17):6657-65. doi: 10.1523/JNEUROSCI.21-17-06657.2001.
The Shaw-like potassium (K(+)) channels Kv3.1 and Kv3.3 are widely coexpressed in distinct neuronal populations in the CNS, possibly explaining the relatively "mild" phenotypes of the Kv3.1 and the Kv3.3 single mutant. Kv3.1-deficient mice show increased cortical gamma- and decreased delta-oscillations (Joho et al., 1997, 1999); otherwise, the Kv3.1-mutant phenotype is relatively subtle (Ho et al., 1997; Sánchez et al., 2000). Kv3.3-deficient mice display no overt phenotype (Chan, 1997). To investigate whether Kv3.1 and Kv3.3 K(+) channels are functionally redundant, we generated the Kv3.1/Kv3.3 double mutant. Kv3.1/Kv3.3-deficient mice were born at the expected Mendelian frequencies indicating that neither Kv3.1 nor Kv3.3 K(+) channels are essential for embryonic development. Although there are no obvious changes in gross brain anatomy, adult Kv3.1/Kv3.3-deficient mice display severe ataxia, tremulous movements, myoclonus, and hypersensitivity to ethanol. Mice appear unbalanced when moving, whereas at rest they exhibit whole-body jerks every few seconds. In spite of the severe motor impairment, Kv3.1/Kv3.3-deficient mice are hyperactive, show increased exploratory activity, and display no obvious learning or memory deficit. Myoclonus, tremor, and ethanol hypersensitivity are only seen in the double-homozygous Kv3.1/Kv3.3-deficient mice, whereas increased locomotor and exploratory activity are also present in double-heterozygous mice. The graded penetrance of mutant traits appears to depend on the number of null alleles, suggesting that some of the distinct phenotypic traits visible in the absence of Kv3.1 and Kv3.3 K(+) channels are unrelated and may be caused by localized dysfunction in different brain regions.
肖样钾(K(+))通道Kv3.1和Kv3.3在中枢神经系统的不同神经元群体中广泛共表达,这可能解释了Kv3.1和Kv3.3单突变体相对“轻微”的表型。Kv3.1缺陷小鼠表现出皮层γ振荡增加和δ振荡减少(约霍等人,1997年,1999年);否则,Kv3.1突变体表型相对不明显(何等人,1997年;桑切斯等人,2000年)。Kv3.缺陷小鼠没有明显的表型(陈,1997年)。为了研究Kv3.1和Kv3.3 K(+)通道在功能上是否冗余,我们构建了Kv3.1/Kv3.3双突变体。Kv3.1/Kv3.3缺陷小鼠以预期的孟德尔频率出生,这表明Kv3.1和Kv3.3 K(+)通道对胚胎发育都不是必需的。虽然大脑大体解剖结构没有明显变化,但成年Kv3.1/Kv3.3缺陷小鼠表现出严重的共济失调、震颤运动、肌阵挛和对乙醇过敏。小鼠移动时显得不平衡,而静止时每隔几秒就会出现全身抽搐。尽管存在严重的运动障碍,但Kv3.1/Kv3.3缺陷小鼠活动亢进,探索活动增加,且没有明显的学习或记忆缺陷。肌阵挛、震颤和乙醇过敏仅在双纯合Kv3.1/Kv3.3缺陷小鼠中出现,而双杂合小鼠也表现出运动和探索活动增加。突变性状的分级外显率似乎取决于无效等位基因的数量,这表明在没有Kv3.1和Kv3.3 K(+)通道的情况下可见的一些不同表型性状是不相关的,可能是由不同脑区的局部功能障碍引起的。