Suppr超能文献

形状空间的几何学:在流感研究中的应用

The geometry of shape space: application to influenza.

作者信息

Lapedes A, Farber R

机构信息

Theoretical Division, Los Alamos, NM 87545, U.S.A.

出版信息

J Theor Biol. 2001 Sep 7;212(1):57-69. doi: 10.1006/jtbi.2001.2347.

Abstract

Shape space was proposed over 20 years ago as a conceptual formalism in which to represent antibody/antigen binding. It has since played a key role in computational immunology. Antigens and antibodies are considered to be points in an abstract "shape space", where coordinates of points in this space represent generalized physico-chemical properties associated with various (unspecified) physical properties related to binding, such as geometric shape, hydrophobicity, charge, etc. Distances in shape space between points representing antibodies and (the shape complement) of antigens are assumed to be related to their affinity, with small distances corresponding to high affinity. In this paper, we provide algorithms, related to metric and ordinal multidimensional scaling algorithms first developed in the mathematical psychology literature, which construct explicit, quantitative coordinates for points in shape space given experimental data such as hemagglutination inhibition assays, or other general affinity assays. Previously, such coordinates had been conceptual constructs and totally implicit. The dimension of shape space deduced from hemagglutination inhibition assays for influenza is low, approximately five dimensional. The deduction of the explicit geometry of shape space given experimental affinity data provides new ways to quantify the similarity of antibodies to antibodies, antigens to antigens, and the affinity of antigens to antibodies. This has potential utility in, e.g. strain selection decisions for annual influenza vaccines, among other applications. The analysis techniques presented here are not restricted to the analysis of antibody-antigen interactions and are generally applicable to affinity data resulting from binding assays.

摘要

形状空间在20多年前被提出,作为一种概念形式体系来表示抗体/抗原结合。从那以后,它在计算免疫学中发挥了关键作用。抗原和抗体被视为抽象“形状空间”中的点,该空间中点的坐标表示与各种(未指定的)与结合相关的物理性质相关的广义物理化学性质,如几何形状、疏水性、电荷等。代表抗体的点与抗原(形状互补体)在形状空间中的距离被认为与它们的亲和力有关,距离小对应高亲和力。在本文中,我们提供了与数学心理学文献中首次开发的度量和序数多维缩放算法相关的算法,这些算法根据血凝抑制试验或其他一般亲和力试验等实验数据为形状空间中的点构建明确的定量坐标。以前,这样的坐标一直是概念性构建且完全隐含的。从流感血凝抑制试验推导的形状空间维度较低,大约为五维。根据实验亲和力数据推导形状空间的明确几何结构,为量化抗体与抗体、抗原与抗原之间的相似性以及抗原与抗体之间的亲和力提供了新方法。这在例如年度流感疫苗的毒株选择决策等应用中具有潜在用途。这里介绍的分析技术不限于抗体 - 抗原相互作用的分析,通常适用于结合试验产生的亲和力数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验