Stanley H E, Amaral L A, Goldberger A L, Havlin S, Peng C K
Department of Physics, Boston University, MA 02215, USA.
Physica A. 1999 Aug 1;270(1-2):309-24. doi: 10.1016/s0378-4371(99)00230-7.
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.
即使在健康的基础条件下,生理系统也会表现出不规则的波动,类似于在远离单一平衡状态的动力系统中发现的波动。这种“非平衡”波动仅仅反映了生理系统不断受到外部和内部噪声干扰这一事实吗?或者,这些波动实际上是否包含有关潜在非平衡控制机制的有用“隐藏”信息?我们报告了一些最近的尝试,通过采用和扩展统计物理学中最近发展的概念和方法来理解复杂生理波动的动力学。具体而言,我们将重点关注逐搏间期变异性,将其作为一个重要量,以帮助阐明可能的非稳态生理变异性,原因如下:(i)心率受直接的神经自主控制;(ii)逐搏间期变异性可通过非侵入性手段轻松测量;(iii)对这些心率动力学的分析可能提供当前方法无法获得的重要实用诊断和预后信息。我们讨论的分析工具可用于更广泛的生理信号。我们首先回顾使用两种分析方法——去趋势波动分析和小波分析——在量化单分形结构方面的最新进展。然后,我们描述最近量化逐搏间期序列多重分形特征的工作,以及发现健康受试者的多重分形结构与患病受试者的不同。