Suppr超能文献

茄参中双特异性s-RNase对S-异源等位基因花粉的排斥预示着一种多聚体自交不亲和花粉成分。

Rejection of S-heteroallelic pollen by a dual-specific s-RNase in Solanum chacoense predicts a multimeric SI pollen component.

作者信息

Luu D T, Qin X, Laublin G, Yang Q, Morse D, Cappadocia M

机构信息

Biology Department, University of Montreal, Montreal, Quebec H1X 2B2, Canada.

出版信息

Genetics. 2001 Sep;159(1):329-35. doi: 10.1093/genetics/159.1.329.

Abstract

S-heteroallelic pollen (HAP) grains are usually diploid and contain two different S-alleles. Curiously, HAP produced by tetraploids derived from self-incompatible diploids are typically self-compatible. The two different hypotheses previously advanced to explain the compatibility of HAP are the lack of pollen-S expression and the "competition effect" between two pollen-S gene products expressed in a single pollen grain. To distinguish between these two possibilities, we used a previously described dual-specific S(11/13)-RNase, termed HVapb-RNase, which can reject two phenotypically distinct pollen (P(11) and P(13)). Since the HVapb-RNase does not distinguish between the two pollen types (it recognizes both), P(11)P(13) HAP should be incompatible with the HVapb-RNase in spite of the competition effect. We show here that P(11)P(13) HAP is accepted by S(11)S(13) styles, but is rejected by the S(11/13)-RNase, which demonstrates that the pollen-S genes must be expressed in HAP. A model involving tetrameric pollen-S is proposed to explain both the compatibility of P(11)P(13) HAP on S(11)S(13)-containing styles and the incompatibility of P(11)P(13) HAP on styles containing the HVapb-RNase.

摘要

S-杂合等位基因花粉(HAP)粒通常是二倍体,包含两个不同的S等位基因。奇怪的是,由自交不亲和二倍体衍生而来的四倍体产生的HAP通常是自交亲和的。先前提出的用于解释HAP亲和性的两种不同假说是花粉S表达缺失以及单个花粉粒中表达的两种花粉S基因产物之间的“竞争效应”。为了区分这两种可能性,我们使用了先前描述的双特异性S(11/13)-核糖核酸酶,称为HVapb-核糖核酸酶,它可以排斥两种表型不同的花粉(P(11)和P(13))。由于HVapb-核糖核酸酶不区分这两种花粉类型(它对两者都有识别),尽管存在竞争效应,P(11)P(13) HAP与HVapb-核糖核酸酶应该是不亲和的。我们在此表明,P(11)P(13) HAP被S(11)S(13)花柱接受,但被S(11/13)-核糖核酸酶排斥,这表明花粉S基因必须在HAP中表达。提出了一个涉及四聚体花粉S的模型,以解释P(11)P(13) HAP在含S(11)S(13)花柱上的亲和性以及P(11)P(13) HAP在含HVapb-核糖核酸酶花柱上的不亲和性。

相似文献

2
Compatible pollinations in Solanum chacoense decrease both S-RNase and S-RNase mRNA.
PLoS One. 2009 Jun 3;4(6):e5774. doi: 10.1371/journal.pone.0005774.
3
Compatibility and incompatibility in S-RNase-based systems.
Ann Bot. 2011 Sep;108(4):647-58. doi: 10.1093/aob/mcr179. Epub 2011 Jul 28.
6
HT proteins contribute to S-RNase-independent pollen rejection in Solanum.
Plant J. 2017 Feb;89(4):718-729. doi: 10.1111/tpj.13416. Epub 2017 Feb 10.
7
Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense.
J Exp Bot. 2008;59(3):545-52. doi: 10.1093/jxb/erm339. Epub 2008 Feb 10.
8
The S-locus and unilateral incompatibility.
Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1133-40. doi: 10.1098/rstb.2003.1284.
9
Degradation of S-RNase in compatible pollen tubes of Solanum chacoense inferred by immunogold labeling.
J Cell Sci. 2014 Oct 1;127(Pt 19):4123-7. doi: 10.1242/jcs.154823. Epub 2014 Jul 29.
10
S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility.
Nature. 2000 Oct 5;407(6804):649-51. doi: 10.1038/35036623.

引用本文的文献

1
S-RNase-based self-incompatibility in angiosperms: Degradation, condensation, and evolution.
Plant Physiol. 2025 Sep 1;199(1). doi: 10.1093/plphys/kiaf360.
2
Dominance between self-incompatibility alleles determines the mating system of allopolyploids.
Evol Lett. 2024 Mar 17;8(4):550-560. doi: 10.1093/evlett/qrae011. eCollection 2024 Aug.
3
Identification and Molecular Analysis of Putative Self-Incompatibility Ribonuclease Alleles in an Extreme Polyploid Species, L.
Front Plant Sci. 2021 Sep 23;12:715414. doi: 10.3389/fpls.2021.715414. eCollection 2021.
4
Polyploidy and self-compatibility: is there an association?
New Phytol. 2004 Jun;162(3):803-811. doi: 10.1111/j.1469-8137.2004.01055.x.
5
Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model.
Front Plant Sci. 2019 Jul 4;10:879. doi: 10.3389/fpls.2019.00879. eCollection 2019.
6
Genes Participate in the Ubiquitination and Degradation Reaction of S-RNase in Self-compatible Peach.
Front Plant Sci. 2018 Feb 22;9:227. doi: 10.3389/fpls.2018.00227. eCollection 2018.
9
Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae.
Breed Sci. 2016 Jan;66(1):116-21. doi: 10.1270/jsbbs.66.116. Epub 2016 Jan 1.

本文引用的文献

2
Lactate Dehydrogenase Isozymes: Dissociation and Recombination of Subunits.
Science. 1963 Jun 21;140(3573):1329-30. doi: 10.1126/science.140.3573.1329.
4
Incompatibility in Autotetraploid Trifolium Repens L. I. Competition and Self-Compatibility.
Genetics. 1954 May;39(3):307-16. doi: 10.1093/genetics/39.3.307.
5
Chromosome fragments and mutation of the incompatibility gene.
Nature. 1961 Jun 10;190:990-1. doi: 10.1038/190990a0.
6
Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition.
Plant Cell. 1997 Oct;9(10):1757-1766. doi: 10.1105/tpc.9.10.1757.
7
Genotype-dependent differences in S12-RNase expression lead to sporadic self-compatibility.
Plant Mol Biol. 2001 Feb;45(3):295-305. doi: 10.1023/a:1006445120648.
8
S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility.
Nature. 2000 Oct 5;407(6804):649-51. doi: 10.1038/35036623.
9
Reply. Establishing A paradigm for the generation of new s alleles.
Plant Cell. 2000 Mar;12(3):313-6. doi: 10.1105/tpc.12.3.313.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验