Suppr超能文献

涉及分类变量交互作用的调节多元回归:两组间异质方差的统计控制。

Moderated multiple regression for interactions involving categorical variables: a statistical control for heterogeneous variance across two groups.

作者信息

Overton R C

机构信息

Strategic Resources Department-Research Division (D-3), State Farm Insurance Companies, One State Farm Plaza, Bloomington, Illinois 61710, USA.

出版信息

Psychol Methods. 2001 Sep;6(3):218-33. doi: 10.1037/1082-989x.6.3.218.

Abstract

Moderated multiple regression (MMR) arguably is the most popular statistical technique for investigating regression slope differences (interactions) across groups (e.g., aptitude-treatment interactions in training and differential test score-job performance prediction in selection testing). However, heterogeneous error variances can greatly bias the typical MMR analysis, and the conditions that cause heterogeneity are not uncommon. Statistical corrections that have been developed require special calculations and are not conducive to follow-up analyses that describe an interaction effect in depth. A weighted least squares (WLS) approach is recommended for 2-group studies. For 2-group studies, WLS is statistically accurate, is readily executed through popular software packages (e.g., SAS Institute, 1999; SPSS, 1999), and allows follow-up tests.

摘要

适度多元回归(MMR)可以说是用于研究不同组间回归斜率差异(交互作用)最常用的统计技术(例如,培训中的能力倾向 - 处理交互作用以及选拔测试中差异测试分数与工作绩效预测)。然而,异质误差方差会极大地使典型的MMR分析产生偏差,并且导致异质性的情况并不罕见。已开发的统计校正需要特殊计算,不利于深入描述交互作用效应的后续分析。对于两组研究,建议采用加权最小二乘法(WLS)。对于两组研究,WLS在统计上是准确的,可以通过常用软件包轻松执行(例如,SAS Institute,1999;SPSS,1999),并且允许进行后续测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验