非固定效应也非随机效应:加权最小二乘法荟萃回归。
Neither fixed nor random: weighted least squares meta-regression.
机构信息
Hendrix College, 1600 Washington St., Conway, AR, 72032, USA.
Department of Economics, Deakin University, 221 Burwood Highway, Burwood, 3125, Victoria, Australia.
出版信息
Res Synth Methods. 2017 Mar;8(1):19-42. doi: 10.1002/jrsm.1211. Epub 2016 Jun 20.
Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd.
我们的研究重新审视并挑战了两个核心的传统荟萃回归估计量
普遍使用的“混合效应”或随机效应荟萃回归分析,以及定义固定效应荟萃回归分析(FE-MRA)的标准误差校正。我们展示了在存在发表(或小样本)偏倚的情况下,无限制加权最小二乘荟萃回归分析(WLS-MRA)估计量如何以及为什么优于传统的随机效应(或混合效应)荟萃回归分析,在所有情况下,WLS-MRA 都与 FE-MRA 一样好,并且在大多数实际应用中优于固定效应。模拟和统计理论表明,当不存在发表偏倚时,WLS-MRA 提供了令人满意的荟萃回归系数估计值,实际上与混合效应或随机效应相当。当存在发表选择偏倚时,WLS-MRA 的偏差总是比混合效应或随机效应小。在实际应用中,无限制的 WLS 荟萃回归可能会给出与固定效应、随机效应和混合效应荟萃回归方法相当或更优的估计值。然而,如果可以排除统计显著性(发表偏倚)的选择,并且当随机、加性正态异质性已知直接影响“真实”回归系数时,随机效应荟萃回归仍然可行,并且可能有些可取。版权所有 © 2016 约翰威立父子公司