Suppr超能文献

音乐家对旋律模式的皮质记忆痕迹形成更优。

Superior formation of cortical memory traces for melodic patterns in musicians.

作者信息

Tervaniemi M, Rytkönen M, Schröger E, Ilmoniemi R J, Näätänen R

机构信息

Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, 00014 Helsinki, Finland.

出版信息

Learn Mem. 2001 Sep-Oct;8(5):295-300. doi: 10.1101/lm.39501.

Abstract

The human central auditory system has a remarkable ability to establish memory traces for invariant features in the acoustic environment despite continual acoustic variations in the sounds heard. By recording the memory-related mismatch negativity (MMN) component of the auditory electric and magnetic brain responses as well as behavioral performance, we investigated how subjects learn to discriminate changes in a melodic pattern presented at several frequency levels. In addition, we explored whether musical expertise facilitates this learning. Our data show that especially musicians who perform music primarily without a score learn easily to detect contour changes in a melodic pattern presented at variable frequency levels. After learning, their auditory cortex detects these changes even when their attention is directed away from the sounds. The present results thus show that, after perceptual learning during attentive listening has taken place, changes in a highly complex auditory pattern can be detected automatically by the human auditory cortex and, further, that this process is facilitated by musical expertise.

摘要

尽管所听到的声音存在持续的声学变化,但人类中枢听觉系统具有为声学环境中的不变特征建立记忆痕迹的非凡能力。通过记录听觉脑电和磁反应中与记忆相关的失匹配负波(MMN)成分以及行为表现,我们研究了受试者如何学习辨别在几个频率水平呈现的旋律模式中的变化。此外,我们还探讨了音乐专业知识是否有助于这种学习。我们的数据表明,尤其是那些主要不看乐谱演奏音乐的音乐家,很容易学会检测在可变频率水平呈现的旋律模式中的轮廓变化。学习后,即使他们的注意力从声音上转移开,他们的听觉皮层也能检测到这些变化。因此,目前的结果表明,在专注聆听过程中的知觉学习发生之后,人类听觉皮层可以自动检测高度复杂听觉模式中的变化,而且,音乐专业知识有助于这一过程。

相似文献

1
Superior formation of cortical memory traces for melodic patterns in musicians.
Learn Mem. 2001 Sep-Oct;8(5):295-300. doi: 10.1101/lm.39501.
3
Automatic encoding of polyphonic melodies in musicians and nonmusicians.
J Cogn Neurosci. 2005 Oct;17(10):1578-92. doi: 10.1162/089892905774597263.
4
Musical training enhances automatic encoding of melodic contour and interval structure.
J Cogn Neurosci. 2004 Jul-Aug;16(6):1010-21. doi: 10.1162/0898929041502706.
5
Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.
Eur J Neurosci. 2009 Oct;30(8):1636-42. doi: 10.1111/j.1460-9568.2009.06955.x. Epub 2009 Oct 12.
6
Practice strategies of musicians modulate neural processing and the learning of sound-patterns.
Neurobiol Learn Mem. 2007 Feb;87(2):236-47. doi: 10.1016/j.nlm.2006.08.011. Epub 2006 Oct 13.
8
Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change.
Neuroimage. 2007 Aug 15;37(2):561-71. doi: 10.1016/j.neuroimage.2007.05.040. Epub 2007 Jun 2.
9
Attentive novelty detection in humans is governed by pre-attentive sensory memory.
Nature. 1994 Nov 3;372(6501):90-2. doi: 10.1038/372090a0.
10
Neural basis of music imagery and the effect of musical expertise.
Eur J Neurosci. 2008 Dec;28(11):2352-60. doi: 10.1111/j.1460-9568.2008.06515.x.

引用本文的文献

1
The mismatch negativity to abstract relationship of tone pairs is independent of attention.
Sci Rep. 2023 Jun 17;13(1):9839. doi: 10.1038/s41598-023-37131-y.
2
Mismatch Responses Evoked by Sound Pattern Violation in the Songbird Forebrain Suggest Common Auditory Processing With Human.
Front Physiol. 2022 Mar 3;13:822098. doi: 10.3389/fphys.2022.822098. eCollection 2022.
3
Chinese and Western Musical Training Impacts the Circuit in Auditory and Reward Systems.
Front Neurosci. 2021 Jul 21;15:663015. doi: 10.3389/fnins.2021.663015. eCollection 2021.
4
Auditory and visual category learning in musicians and nonmusicians.
J Exp Psychol Gen. 2022 Mar;151(3):739-748. doi: 10.1037/xge0001088. Epub 2021 Aug 2.
5
Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs.
J Int Adv Otol. 2021 Jul;17(4):313-318. doi: 10.5152/iao.2021.8477.
6
7
Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale.
Hum Brain Mapp. 2021 Mar;42(4):941-952. doi: 10.1002/hbm.25269. Epub 2020 Nov 4.
8
Long-term implicit memory for sequential auditory patterns in humans.
Elife. 2020 May 18;9:e56073. doi: 10.7554/eLife.56073.
9
Surprise response as a probe for compressed memory states.
PLoS Comput Biol. 2020 Feb 3;16(2):e1007065. doi: 10.1371/journal.pcbi.1007065. eCollection 2020 Feb.
10
On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood.
Front Psychol. 2019 Jul 30;10:1704. doi: 10.3389/fpsyg.2019.01704. eCollection 2019.

本文引用的文献

2
Activation of the auditory pre-attentive change detection system by tone repetitions with fast stimulation rate.
Brain Res Cogn Brain Res. 2001 Jan;10(3):323-7. doi: 10.1016/s0926-6410(00)00043-4.
3
Plastic changes in the auditory cortex induced by intensive frequency discrimination training.
Neuroreport. 2000 Mar 20;11(4):817-22. doi: 10.1097/00001756-200003200-00032.
4
The concept of auditory stimulus representation in cognitive neuroscience.
Psychol Bull. 1999 Nov;125(6):826-59. doi: 10.1037/0033-2909.125.6.826.
5
Neuronal populations in the human brain extracting invariant relationships from acoustic variance.
Neurosci Lett. 1999 Apr 23;265(3):179-82. doi: 10.1016/s0304-3940(99)00237-2.
7
The time course of auditory perceptual learning: neurophysiological changes during speech-sound training.
Neuroreport. 1998 Nov 16;9(16):3557-60. doi: 10.1097/00001756-199811160-00003.
8
Binaural information can converge in abstract memory traces.
Psychophysiology. 1998 Sep;35(5):483-7. doi: 10.1017/s0048577298970895.
9
The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.
Neurosci Lett. 1997 Apr 18;226(1):1-4. doi: 10.1016/s0304-3940(97)00217-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验