DeFelice L J, Adams S V, Ypey D L
Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
Biosystems. 2001 Sep-Oct;62(1-3):57-66. doi: 10.1016/s0303-2647(01)00137-x.
Norepinephrine transporters (NETs) use the Na gradient to remove norepinephrine (NE) from the synaptic cleft of adrenergic neurons following NE release from the presynaptic terminal. By coupling NE to the inwardly directed Na gradient, it is possible to concentrate NE inside cells. This mechanism, which is referred to as co-transport or secondary transport (Läuger, 1991, Electrogenic Ion Pumps, Sinauer Associates) is apparently universal: Na coupled transport applies to serotonin transporters (SERTs), dopamine transporters (DATs), glutamate transporters, and many others, including transporters for osmolites, metabolites and substrates such as sugar. Recently we have shown that NETs and SERTs transport norepinephrine or serotonin as if Na and the transmitter permeated through an ion channel together 'Galli et al., 1998, PNAS 95, 13260-13265; Petersen and DeFelice, 1999, Nature Neurosci. 2, 605-610'. These data are paradoxical because it has been difficult to envisage how NE, for example, would couple to Na if these ions move passively through an open pore. An 'alternating access' model is usually evoked to explain coupling: in such models NE and Na bind to NET, which then undergoes a conformational change to release NE and Na on the inside. The empty transporter then turns outward to complete the cycle. Alternating-access models never afford access to an open channel. Rather, substrates and co-transported ions are occluded in the transporter and carried across the membrane. The coupling mechanism we propose is fundamentally different than the coupling mechanism evoked in the alternating access model. To explain coupling in co-transporters, we use a mechanism first evoked by 'Hodgkin and Keynes (1955) J. Physiol. 128, 61-88' to explain ion interactions in K-selective channels. In the Hodgkin and Keynes model, K ions move single-file through a long narrow pore. Their model accounted for the inward/outward flux ratio if they assumed that two K ions queue within the pore. We evoke a similar model for the co-transport of transmitter and Na. In our case, however, coupling occurs not only between like ions but also between unlike ions (i.e. the transmitter and Na ). We made a replica of the Hodgkin and Keynes mechanical model to test our ideas, and we extended the model with computer simulations using Monte Carlo methods. We also developed an analytic formula for Na coupled co-transport that is analogous to the single-file Ussing equation for channels. The model shows that stochastic diffusion through a long narrow pore can explain coupled transport. The length of the pore amplifies the Na gradient that drives co-transport.
去甲肾上腺素转运体(NETs)利用钠离子梯度,在去甲肾上腺素从突触前终末释放后,将其从肾上腺素能神经元的突触间隙中移除。通过将去甲肾上腺素与内向的钠离子梯度偶联,有可能在细胞内浓缩去甲肾上腺素。这种机制,被称为协同转运或二次转运(Läuger,1991年,《电生离子泵》,Sinauer Associates出版社),显然是普遍存在的:钠离子偶联转运适用于5-羟色胺转运体(SERTs)、多巴胺转运体(DATs)、谷氨酸转运体以及许多其他转运体,包括渗透溶质、代谢物和糖等底物的转运体。最近我们发现,NETs和SERTs转运去甲肾上腺素或5-羟色胺时,就好像钠离子和递质一起通过一个离子通道渗透过去一样(Galli等人,1998年,《美国国家科学院院刊》95卷,13260 - 13265页;Petersen和DeFelice,1999年,《自然神经科学》2卷,605 - 610页)。这些数据是自相矛盾的,因为很难设想,例如,如果这些离子通过一个开放的孔道被动移动,去甲肾上腺素如何与钠离子偶联。通常会援引“交替通路”模型来解释偶联现象:在这类模型中,去甲肾上腺素和钠离子与NET结合,然后NET发生构象变化,在细胞内部释放去甲肾上腺素和钠离子。空的转运体再向外翻转以完成循环。交替通路模型永远不会提供进入开放通道的机会。相反,底物和协同转运的离子被封闭在转运体中并被带过膜。我们提出的偶联机制与交替通路模型中所援引的偶联机制有根本的不同。为了解释协同转运体中的偶联现象,我们使用了一种最初由Hodgkin和Keynes(1955年,《生理学杂志》128卷,61 - 88页)提出的机制来解释钾离子选择性通道中的离子相互作用。在Hodgkin和Keynes模型中,钾离子单排通过一个长而窄的孔道。如果他们假设两个钾离子在孔道内排队,他们的模型就能解释内向/外向通量比。我们针对递质和钠离子的协同转运援引了一个类似的模型。然而,在我们的例子中,偶联不仅发生在同类离子之间,也发生在不同类离子之间(即递质和钠离子之间)。我们制作了一个Hodgkin和Keynes力学模型的复制品来检验我们的想法,并且我们使用蒙特卡罗方法通过计算机模拟对模型进行了扩展。我们还推导了一个类似于通道单排Ussing方程的钠离子偶联协同转运的解析公式。该模型表明,通过一个长而窄的孔道的随机扩散可以解释偶联转运。孔道的长度放大了驱动协同转运的钠离子梯度。