Suppr超能文献

大鼠γ-氨基丁酸共转运体rGAT1中电荷移动与转运相关电流之间的关系。

The relation between charge movement and transport-associated currents in the rat GABA cotransporter rGAT1.

作者信息

Fesce Riccardo, Giovannardi Stefano, Binda Francesca, Bossi Elena, Peres Antonio

机构信息

Laboratory of Cellular and Molecular Physiology, Department of Structural and Functional Biology, University of Insubria, Via Dunant 3, 21100 Varese, Italy.

出版信息

J Physiol. 2002 Dec 15;545(3):739-50. doi: 10.1113/jphysiol.2002.026823.

Abstract

Most cotransporters characteristically display two main kinds of electrical activity: in the absence of organic substrate, transient presteady-state currents (I(pre)) are generated by charge relocation during voltage steps; in the presence of substrate, sustained, transport-associated currents (I(tr)) are recorded. Quantitative comparison of these two currents, in Xenopus oocytes expressing the neural GABA cotransporter rGAT1, revealed several unforeseen consistencies between I(pre) and I(tr), in terms of magnitude and kinetic parameters. The decay rate constant (r) of I(pre) and the quantity of charge displaced to an inner position in the transporter (Q(in)(0)) depended on voltage and ionic conditions. Saturating GABA concentrations, applied under the same conditions, suppressed I(pre) (i.e. Q(in)( infinity ) = 0) and produced a transport-associated current with amplitude I(tr) = Q(in)(0)r. At non-saturating levels of GABA, changes of I(tr) were compensated by corresponding variations in Q(in), such that I(pre) and I(tr) complemented each other, according to the relation: I(tr) = (Q(in)(0) - Q(in)) r. Complementarity of magnitude, superimposable kinetic properties and equal dependence on voltage and Na(+) point to the uniqueness of the charge carrier for both processes, suggesting that transport and charge migration arise from the same molecular mechanism. The observed experimental relations were correctly predicted by a simple three-state kinetic model, in which GABA binding takes place after charge binding and inward migration have occurred. The model also predicts the observed voltage dependence of the apparent affinity of the transporter for GABA, and suggests a voltage-independent GABA binding rate with a value around 0.64 microM(-1) s(-1).

摘要

大多数协同转运蛋白具有两种主要的电活动类型

在没有有机底物的情况下,电压阶跃期间电荷重新分布会产生瞬态预稳态电流(I(pre));在有底物存在时,会记录到持续的、与转运相关的电流(I(tr))。在表达神经GABA协同转运蛋白rGAT1的非洲爪蟾卵母细胞中,对这两种电流进行定量比较,发现在I(pre)和I(tr)之间,在幅度和动力学参数方面存在一些意想不到的一致性。I(pre)的衰减速率常数(r)以及转运蛋白中向内部位置位移的电荷量(Q(in)(0))取决于电压和离子条件。在相同条件下施加饱和GABA浓度会抑制I(pre)(即Q(in)(无穷大)=0),并产生幅度为I(tr)=Q(in)(0)r的与转运相关的电流。在非饱和GABA水平下,I(tr)的变化由Q(in)的相应变化补偿,使得I(pre)和I(tr)相互补充,根据以下关系:I(tr)=(Q(in)(0)-Q(in))r。幅度的互补性、可叠加的动力学特性以及对电压和Na⁺的同等依赖性表明这两个过程的电荷载体具有唯一性,这表明转运和电荷迁移源于相同的分子机制。一个简单的三态动力学模型正确地预测了观察到的实验关系,在该模型中,GABA结合发生在电荷结合和向内迁移之后。该模型还预测了观察到的转运蛋白对GABA的表观亲和力的电压依赖性,并表明GABA结合速率与电压无关,值约为0.64μM⁻¹ s⁻¹。

相似文献

1
The relation between charge movement and transport-associated currents in the rat GABA cotransporter rGAT1.
J Physiol. 2002 Dec 15;545(3):739-50. doi: 10.1113/jphysiol.2002.026823.
3
Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1.
FEBS Lett. 2002 Feb 13;512(1-3):303-7. doi: 10.1016/s0014-5793(02)02271-8.
9
GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
J Gen Physiol. 1999 Sep;114(3):445-57. doi: 10.1085/jgp.114.3.445.

引用本文的文献

1
Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1).
Cell Mol Life Sci. 2024 Jun 17;81(1):269. doi: 10.1007/s00018-024-05309-w.
2
A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain.
Front Physiol. 2023 Apr 13;14:1145973. doi: 10.3389/fphys.2023.1145973. eCollection 2023.
3
The "www" of Oocytes: The Why, When, What of Oocytes in Membrane Transporters Research.
Membranes (Basel). 2022 Sep 25;12(10):927. doi: 10.3390/membranes12100927.
4
Functional characterization of Atlantic salmon (Salmo salar L.) PepT2 transporters.
J Physiol. 2022 May;600(10):2377-2400. doi: 10.1113/JP282781. Epub 2022 Apr 28.
5
Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1.
Plant Cell. 2013 Aug;25(8):3010-21. doi: 10.1105/tpc.113.113621. Epub 2013 Aug 20.
7
Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1.
Cell Mol Life Sci. 2011 Sep;68(17):2961-75. doi: 10.1007/s00018-010-0604-3. Epub 2010 Dec 23.
8
Residues R282 and D341 act as electrostatic gates in the proton-dependent oligopeptide transporter PepT1.
J Physiol. 2011 Feb 1;589(Pt 3):495-510. doi: 10.1113/jphysiol.2010.200469. Epub 2010 Nov 29.
9
Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1.
PLoS One. 2010 Sep 7;5(9):e12605. doi: 10.1371/journal.pone.0012605.
10
GABA transporter lysine 448: a key residue for tricyclic antidepressants interaction.
Cell Mol Life Sci. 2009 Dec;66(23):3797-808. doi: 10.1007/s00018-009-0153-9.

本文引用的文献

1
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
4
Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1.
FEBS Lett. 2002 Feb 13;512(1-3):303-7. doi: 10.1016/s0014-5793(02)02271-8.
6
Single-file diffusion and neurotransmitter transporters: Hodgkin and Keynes model revisited.
Biosystems. 2001 Sep-Oct;62(1-3):57-66. doi: 10.1016/s0303-2647(01)00137-x.
7
Three kinds of currents in the canine betaine-GABA transporter BGT-1 expressed in Xenopus laevis oocytes.
Biochim Biophys Acta. 2001 Apr 23;1538(2-3):172-80. doi: 10.1016/s0167-4889(00)00144-0.
8
Proton-sensitive transitions of renal type II Na(+)-coupled phosphate cotransporter kinetics.
Biophys J. 2000 Jul;79(1):215-30. doi: 10.1016/S0006-3495(00)76285-0.
9
GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
J Gen Physiol. 1999 Sep;114(3):459-75. doi: 10.1085/jgp.114.3.459.
10
GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
J Gen Physiol. 1999 Sep;114(3):445-57. doi: 10.1085/jgp.114.3.445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验