Paulin M G, Hoffman L F
Department of Zoology and Centre for Neuroscience, University of Otago, New Zealand.
Neural Netw. 2001 Jul-Sep;14(6-7):877-81. doi: 10.1016/s0893-6080(01)00058-2.
We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.
我们定义了一种用于评估脉冲神经元行为预测模型质量的度量。这种度量,即每个脉冲的信息增益(Is),表明该模型比通过指定神经元在同一时间段内的平均放电率进行预测能多提供多少信息。我们应用最大Is准则来优化用于估计神经放电率的高斯平滑滤波器的性能。利用来自牛蛙前庭半规管神经元的数据以及来自模拟积分发放神经元的数据,用于放电率估计的最优带宽通常与平均放电率相似。精确计时模型和平均速率模型是性能较差的极限情况。我们估计牛蛙半规管感觉神经元每个脉冲传输大约1比特的刺激相关信息。