Fritzer H P
Institute of Physical and Theoretical Chemistry, Graz University of Technology, Austria.
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 1;57(10):1919-30. doi: 10.1016/s1386-1425(01)00477-2.
A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry.
本文提出了一种新的且相对简单的四元数演算版本,它特别适用于分子对称性和结构方面的应用。在引入实四元数代数及其在群SO(4)中的经典矩阵表示之后,讨论了其与三维空间中向量的关系以及通过代数自同构性质与旋转群SO(3)的联系。通过群SU(2)给出了单位四元数与凯莱 - 克莱因参数和欧拉参数的关联。除了旋转之外,还给出了四元数到其他重要对称操作(反射和空间反演)的扩展。最后,通过处理一些应用于二十面体对称性的例子,揭示了四元数演算在分子对称性问题中的作用。