Kurtz M, Bhattacharjee J K
J Gen Microbiol. 1975 Jan;86(1):103-10. doi: 10.1099/00221287-86-1-103.
Glutamate-alpha-ketoadipate transaminase, saccharopine reductase, and saccharopine dehydrogenase activities were demonstrated in extracts of Rhodotorula glutinis but alpha-aminoadipate reductase activity could not be measured in whole cells or in extracts. Lysine auxotroph lys1 grew in the presence of L-lysine or DL-alpha-aminoadipate and incorporated radioactivity from DL-alpha-amino-[I-14C]adipate into lysine during growth. Growing wild-type cells converted L-[U-14C]lysine into alpha-amino-[14C]adipate, suggesting both biosynthetic and degradative roles for alpha-aminoadipate. Lysine auxotrophs lys1, lys2 and lys3 of R. glutinis, unlike lysine auxotrophs of Saccharomyces cerevisiae, satisfied their growth requirement with L-pipecolate. Moreover, extracts of wild-type R. glutinis catalysed the conversion of L-pipecolate to alpha-aminoadipate-delta semialdehyde. These results suggest a biosynthetic role for L-pipecolate in R. glutinis but not in S. cerevisiae.
在粘红酵母提取物中检测到谷氨酸-α-酮己二酸转氨酶、酵母氨酸还原酶和酵母氨酸脱氢酶的活性,但在全细胞或提取物中均未检测到α-氨基己二酸还原酶的活性。赖氨酸营养缺陷型lys1在L-赖氨酸或DL-α-氨基己二酸存在的情况下生长,并且在生长过程中将DL-α-氨基-[I-14C]己二酸的放射性掺入赖氨酸中。正在生长的野生型细胞将L-[U-14C]赖氨酸转化为α-氨基-[14C]己二酸,这表明α-氨基己二酸具有生物合成和降解作用。与酿酒酵母的赖氨酸营养缺陷型不同,粘红酵母的赖氨酸营养缺陷型lys1、lys2和lys3可以通过L-哌啶酸满足其生长需求。此外,野生型粘红酵母的提取物催化L-哌啶酸转化为α-氨基己二酸-δ-半醛。这些结果表明L-哌啶酸在粘红酵母中具有生物合成作用,但在酿酒酵母中没有。