Suppr超能文献

一种用于CT的迭代最大似然多色算法。

An iterative maximum-likelihood polychromatic algorithm for CT.

作者信息

De Man B, Nuyts J, Dupont P, Marchal G, Suetens P

机构信息

Medical Image Computing, Radiology-ESAT/PSI, University Hospital Gasthuisberg, Leuven, Belgium.

出版信息

IEEE Trans Med Imaging. 2001 Oct;20(10):999-1008. doi: 10.1109/42.959297.

Abstract

A new iterative maximum-likelihood reconstruction algorithm for X-ray computed tomography is presented. The algorithm prevents beam hardening artifacts by incorporating a polychromatic acquisition model. The continuous spectrum of the X-ray tube is modeled as a number of discrete energies. The energy dependence of the attenuation is taken into account by decomposing the linear attenuation coefficient into a photoelectric component and a Compton scatter component. The relative weight of these components is constrained based on prior material assumptions. Excellent results are obtained for simulations and for phantom measurements. Beam-hardening artifacts are effectively eliminated. The relation with existing algorithms is discussed. The results confirm that improving the acquisition model assumed by the reconstruction algorithm results in reduced artifacts. Preliminary results indicate that metal artifact reduction is a very promising application for this new algorithm.

摘要

提出了一种用于X射线计算机断层扫描的新型迭代最大似然重建算法。该算法通过纳入多色采集模型来防止束硬化伪影。X射线管的连续光谱被建模为多个离散能量。通过将线性衰减系数分解为光电分量和康普顿散射分量来考虑衰减的能量依赖性。基于先验材料假设对这些分量的相对权重进行约束。在模拟和体模测量中均获得了优异的结果。束硬化伪影得到有效消除。讨论了与现有算法的关系。结果证实,改进重建算法所假设的采集模型会减少伪影。初步结果表明,减少金属伪影是这种新算法非常有前景的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验