Suppr超能文献

基于单变量优化的双能CT投影分解

Projection decomposition via univariate optimization for dual-energy CT.

作者信息

Cong Wenxiang, De Man Bruno, Wang Ge

机构信息

Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.

GE Research, One Research Circle, Niskayuna, NY, USA.

出版信息

J Xray Sci Technol. 2022;30(4):725-736. doi: 10.3233/XST-221153.

Abstract

Dual-energy computed tomography (DECT) acquires two x-ray projection datasets with different x-ray energy spectra, performs material-specific image reconstruction based on the energy-dependent non-linear integral model, and provides more accurate quantification of attenuation coefficients than single energy spectrum CT. In the diagnostic energy range, x-ray energy-dependent attenuation is mainly caused by photoelectric absorption and Compton scattering. Theoretically, these two physical components of the x-ray attenuation mechanism can be determined from two projection datasets with distinct energy spectra. Practically, the solution of the non-linear integral equation is complicated due to spectral uncertainty, detector sensitivity, and data noise. Conventional multivariable optimization methods are prone to local minima. In this paper, we develop a new method for DECT image reconstruction in the projection domain. This method combines an analytic solution of a polynomial equation and a univariate optimization to solve the polychromatic non-linear integral equation. The polynomial equation of an odd order has a unique real solution with sufficient accuracy for image reconstruction, and the univariate optimization can achieve the global optimal solution, allowing accurate and stable projection decomposition for DECT. Numerical and physical phantom experiments are performed to demonstrate the effectiveness of the method in comparison with the state-of-the-art projection decomposition methods. As a result, the univariate optimization method yields a quality improvement of 15% for image reconstruction and substantial reduction of the computational time, as compared to the multivariable optimization methods.

摘要

双能计算机断层扫描(DECT)获取具有不同X射线能谱的两个X射线投影数据集,基于能量依赖的非线性积分模型进行物质特异性图像重建,并且比单能谱CT能更准确地量化衰减系数。在诊断能量范围内,X射线能量依赖的衰减主要由光电吸收和康普顿散射引起。理论上,X射线衰减机制的这两个物理成分可以从具有不同能谱的两个投影数据集中确定。实际上,由于光谱不确定性、探测器灵敏度和数据噪声,非线性积分方程的求解很复杂。传统的多变量优化方法容易陷入局部最小值。在本文中,我们开发了一种在投影域中进行DECT图像重建的新方法。该方法结合了多项式方程的解析解和单变量优化来求解多色非线性积分方程。奇数阶多项式方程具有唯一的实解,其精度足以用于图像重建,并且单变量优化可以实现全局最优解,从而允许对DECT进行准确而稳定的投影分解。进行了数值和物理体模实验,以证明该方法与最先进的投影分解方法相比的有效性。结果表明,与多变量优化方法相比,单变量优化方法在图像重建方面质量提高了15%,并且显著减少了计算时间。

相似文献

4
Monochromatic image reconstruction via machine learning.基于机器学习的单色图像重建
Mach Learn Sci Technol. 2021 Jun;2(2). doi: 10.1088/2632-2153/abdbff. Epub 2021 Apr 14.

引用本文的文献

1
Material decomposition using dual-energy CT with unsupervised learning.基于无监督学习的双能 CT 材料分解。
Phys Eng Sci Med. 2023 Dec;46(4):1607-1617. doi: 10.1007/s13246-023-01323-7. Epub 2023 Sep 11.

本文引用的文献

1
Virtual Monoenergetic CT Imaging via Deep Learning.通过深度学习实现的虚拟单能CT成像
Patterns (N Y). 2020 Oct 19;1(8):100128. doi: 10.1016/j.patter.2020.100128. eCollection 2020 Nov 13.
10
Dual-energy CT-based monochromatic imaging.基于双能 CT 的单能量成像。
AJR Am J Roentgenol. 2012 Nov;199(5 Suppl):S9-S15. doi: 10.2214/AJR.12.9121.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验