Suppr超能文献

基于尺度的扩散图像滤波,保留边界清晰度和精细结构。

Scale-based diffusive image filtering preserving boundary sharpness and fine structures.

作者信息

Saha P K, Udupa J K

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia 19104-6021, USA.

出版信息

IEEE Trans Med Imaging. 2001 Nov;20(11):1140-55. doi: 10.1109/42.963817.

Abstract

Image acquisition techniques often suffer from low signal-to-noise ratio (SNR) and/or contrast-to-noise ratio (CNR). Although many acquisition techniques are available to minimize these, post acquisition filtering is a major off-line image processing technique commonly used to improve the SNR and CNR. A major drawback of filtering is that it often diffuses/blurs important structures along with noise. In this paper, we introduce two scale-based filtering methods that use local structure size or "object scale" information to arrest smoothing around fine structures and across even low-gradient boundaries. The first of these methods uses a weighted average over a scale-dependent neighborhood while the other employs scale-dependent diffusion conductance to perform filtering. Both methods adaptively modify the degree of filtering at any image location depending on local object scale. Object scale allows us to accurately use a restricted homogeneity parameter for filtering in regions with fine details and in the vicinity of boundaries while a generous parameter in the interiors of homogeneous regions. Qualitative experiments based on both phantoms and patient magnetic resonance images show significant improvements using the scale-based methods over the extant anisotropic diffusive filtering method in preserving fine details and sharpness of object boundaries. Quantitative analyses utilizing 25 phantom images generated under a range of conditions of blurring, noise, and background variation confirm the superiority of the new scale-based approaches.

摘要

图像采集技术常常存在低信噪比(SNR)和/或对比度噪声比(CNR)的问题。尽管有许多采集技术可用于将这些问题最小化,但采集后滤波是一种常用的主要离线图像处理技术,用于提高SNR和CNR。滤波的一个主要缺点是它常常在去除噪声的同时使重要结构扩散/模糊。在本文中,我们介绍了两种基于尺度的滤波方法,它们利用局部结构大小或“目标尺度”信息来抑制精细结构周围以及低梯度边界处的平滑。其中第一种方法在依赖尺度的邻域上使用加权平均,而另一种方法采用依赖尺度的扩散传导率来进行滤波。两种方法都根据局部目标尺度自适应地修改图像中任何位置的滤波程度。目标尺度使我们能够在具有精细细节的区域以及边界附近准确地使用受限的均匀性参数进行滤波,而在均匀区域内部使用宽松的参数。基于体模和患者磁共振图像的定性实验表明,与现有的各向异性扩散滤波方法相比,基于尺度的方法在保留精细细节和目标边界清晰度方面有显著改进。利用在一系列模糊、噪声和背景变化条件下生成的25幅体模图像进行的定量分析证实了新的基于尺度的方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验