Suppr超能文献

一种用于身体成分分析的模糊连接性的新扩展:在大腿、大脑和全身组织分割中的应用。

A Novel Extension to Fuzzy Connectivity for Body Composition Analysis: Applications in Thigh, Brain, and Whole Body Tissue Segmentation.

出版信息

IEEE Trans Biomed Eng. 2019 Apr;66(4):1069-1081. doi: 10.1109/TBME.2018.2866764. Epub 2018 Aug 30.

Abstract

Magnetic resonance imaging (MRI) is the non-invasive modality of choice for body tissue composition analysis due to its excellent soft-tissue contrast and lack of ionizing radiation. However, quantification of body composition requires an accurate segmentation of fat, muscle, and other tissues from MR images, which remains a challenging goal due to the intensity overlap between them. In this study, we propose a fully automated, data-driven image segmentation platform that addresses multiple difficulties in segmenting MR images such as varying inhomogeneity, non-standardness, and noise, while producing a high-quality definition of different tissues. In contrast to most approaches in the literature, we perform segmentation operation by combining three different MRI contrasts and a novel segmentation tool, which takes into account variability in the data. The proposed system, based on a novel affinity definition within the fuzzy connectivity image segmentation family, prevents the need for user intervention and reparametrization of the segmentation algorithms. In order to make the whole system fully automated, we adapt an affinity propagation clustering algorithm to roughly identify tissue regions and image background. We perform a thorough evaluation of the proposed algorithm's individual steps as well as comparison with several approaches from the literature for the main application of muscle/fat separation. Furthermore, whole-body tissue composition and brain tissue delineation were conducted to show the generalization ability of the proposed system. This new automated platform outperforms other state-of-the-art segmentation approaches both in accuracy and efficiency.

摘要

磁共振成像(MRI)因其出色的软组织对比度和无电离辐射的特性,成为分析身体组织成分的首选非侵入性方式。然而,要对身体成分进行定量分析,需要从 MRI 图像中准确分割脂肪、肌肉和其他组织,由于它们之间的强度重叠,这仍然是一个具有挑战性的目标。在本研究中,我们提出了一个完全自动化、数据驱动的图像分割平台,解决了从 MRI 图像中分割的多个难题,如不均匀性、非标准性和噪声,同时生成不同组织的高质量定义。与文献中的大多数方法不同,我们通过结合三种不同的 MRI 对比和一种新的分割工具来执行分割操作,该工具考虑了数据的可变性。所提出的系统基于模糊连通性图像分割家族中的新的亲和力定义,避免了用户干预和分割算法重新参数化的需要。为了使整个系统完全自动化,我们采用了一种亲和力传播聚类算法来大致识别组织区域和图像背景。我们对所提出算法的各个步骤进行了彻底的评估,并与文献中的几种方法进行了比较,主要用于肌肉/脂肪分离。此外,还进行了全身组织成分和脑组织描绘,以展示所提出系统的泛化能力。这个新的自动化平台在准确性和效率方面都优于其他最先进的分割方法。

相似文献

3
Fuzzy local Gaussian mixture model for brain MR image segmentation.用于脑部磁共振图像分割的模糊局部高斯混合模型
IEEE Trans Inf Technol Biomed. 2012 May;16(3):339-47. doi: 10.1109/TITB.2012.2185852. Epub 2012 Jan 24.

本文引用的文献

3
Image-Based Tissue Distribution Modeling for Skeletal Muscle Quality Characterization.基于图像的骨骼肌质量特征组织分布建模
IEEE Trans Biomed Eng. 2016 Apr;63(4):805-13. doi: 10.1109/TBME.2015.2474305. Epub 2015 Aug 28.
6
Introducing Willmore flow into level set segmentation of spinal vertebrae.将威尔莫尔流引入脊柱的水平集分割。
IEEE Trans Biomed Eng. 2013 Jan;60(1):115-22. doi: 10.1109/TBME.2012.2225833. Epub 2012 Oct 22.
10
Hierarchical scale-based multiobject recognition of 3-D anatomical structures.基于层次尺度的 3D 解剖结构的多目标识别。
IEEE Trans Med Imaging. 2012 Mar;31(3):777-89. doi: 10.1109/TMI.2011.2180920. Epub 2011 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验