Suppr超能文献

氢氧化铁在腐败希瓦氏菌表面的吸附作用:细胞结合的细粒矿物并非总是重新形成。

Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo.

作者信息

Glasauer S, Langley S, Beveridge T J

机构信息

Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada.

出版信息

Appl Environ Microbiol. 2001 Dec;67(12):5544-50. doi: 10.1128/AEM.67.12.5544-5550.2001.

Abstract

Shewanella putrefaciens, a gram-negative, facultative anaerobe, is active in the cycling of iron through its interaction with Fe (hydr)oxides in natural environments. Fine-grained Fe precipitates that are attached to the outer membranes of many gram-negative bacteria have most often been attributed to precipitation and growth of the mineral at the cell surface. Our study of the sorption of nonbiogenic Fe (hydr)oxides revealed, however, that large quantities of nanometer-scale ferrihydrite (hydrous ferric oxide), goethite (alpha-FeOOH), and hematite (alpha-Fe(2)O(3)) adhered to the cell surface. Attempts to separate suspensions of cells and minerals with an 80% glycerin cushion proved that the sorbed minerals were tightly attached to the bacteria. The interaction between minerals and cells resulted in the formation of mineral-cell aggregates, which increased biomass density and provided better sedimentation of mineral Fe compared to suspensions of minerals alone. Transmission electron microscopy observations of cells prepared by whole-mount, conventional embedding, and freeze-substitution methods confirmed the close association between cells and minerals and suggested that in some instances, the mineral crystals had even penetrated the outer membrane and peptidoglycan layers. Given the abundance of these mineral types in natural environments, the data suggest that not all naturally occurring cell surface-associated minerals are necessarily formed de novo on the cell wall.

摘要

腐败希瓦氏菌是一种革兰氏阴性兼性厌氧菌,通过与自然环境中的铁(氢)氧化物相互作用,在铁循环中发挥作用。附着在许多革兰氏阴性细菌外膜上的细颗粒铁沉淀物,通常被认为是矿物质在细胞表面沉淀和生长的结果。然而,我们对非生物源铁(氢)氧化物吸附的研究表明,大量纳米级的水铁矿(氢氧化铁)、针铁矿(α-FeOOH)和赤铁矿(α-Fe₂O₃)附着在细胞表面。用80%甘油垫层分离细胞和矿物质悬浮液的尝试证明,吸附的矿物质与细菌紧密相连。矿物质与细胞之间的相互作用导致形成矿物质-细胞聚集体,与单独的矿物质悬浮液相比,这增加了生物量密度,并使矿物质铁的沉降效果更好。通过整装、常规包埋和冷冻置换方法制备的细胞的透射电子显微镜观察证实了细胞与矿物质之间的紧密联系,并表明在某些情况下,矿物晶体甚至穿透了外膜和肽聚糖层。鉴于这些矿物类型在自然环境中的丰富性,数据表明并非所有天然存在的细胞表面相关矿物质都一定是在细胞壁上重新形成的。

相似文献

3
Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
Science. 2002 Jan 4;295(5552):117-9. doi: 10.1126/science.1066577.
4
Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.
Geobiology. 2010 Jun 1;8(3):209-22. doi: 10.1111/j.1472-4669.2010.00238.x. Epub 2010 Apr 12.
5
Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.
Environ Sci Technol. 2007 Jan 1;41(1):166-72. doi: 10.1021/es060695p.
7
Effects of Al substitution on sorption of diclofenac to Fe(III) (hydr)oxides: roles of phase transition and sorption mechanisms.
Environ Sci Pollut Res Int. 2022 Mar;29(15):21314-21327. doi: 10.1007/s11356-021-16992-8. Epub 2021 Nov 10.
8
Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
Environ Sci Technol. 2011 Oct 15;45(20):8826-33. doi: 10.1021/es202445w. Epub 2011 Sep 16.
9
Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.
Water Environ Res. 2017 Jun 1;89(6):519-526. doi: 10.2175/106143017X14902968254449.

引用本文的文献

2
Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations.
Geobiology. 2022 Nov;20(6):743-763. doi: 10.1111/gbi.12523. Epub 2022 Sep 10.
3
Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria.
Geochem Trans. 2005 Oct 24;6(4):67. doi: 10.1186/1467-4866-6-67. eCollection 2005.
4
Effects of Interfaces of Goethite and Humic Acid-Goethite Complex on Microbial Degradation of Methyl Parathion.
Front Microbiol. 2018 Aug 3;9:1748. doi: 10.3389/fmicb.2018.01748. eCollection 2018.
6
7
Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.
Appl Environ Microbiol. 2008 Jan;74(1):251-8. doi: 10.1128/AEM.01580-07. Epub 2007 Nov 2.
8
Cellular response of Shewanella oneidensis to strontium stress.
Appl Environ Microbiol. 2006 Jan;72(1):890-900. doi: 10.1128/AEM.72.1.890-900.2006.
10
Characterization of the lipopolysaccharides and capsules of Shewanella spp.
Appl Environ Microbiol. 2002 Sep;68(9):4653-7. doi: 10.1128/AEM.68.9.4653-4657.2002.

本文引用的文献

1
Role of Hydrophobicity in Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga to Amorphous Fe(III) Oxide.
Appl Environ Microbiol. 1997 Oct;63(10):3837-43. doi: 10.1128/aem.63.10.3837-3843.1997.
2
Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand.
Appl Environ Microbiol. 1994 Sep;60(9):3300-6. doi: 10.1128/aem.60.9.3300-3306.1994.
4
Organic matter mineralization with reduction of ferric iron in anaerobic sediments.
Appl Environ Microbiol. 1986 Apr;51(4):683-9. doi: 10.1128/aem.51.4.683-689.1986.
6
Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens.
Environ Sci Technol. 2001 Jan 15;35(2):341-7. doi: 10.1021/es001258s.
7
On the architecture of the gram-negative bacterial murein sacculus.
J Bacteriol. 2000 Oct;182(20):5925-30. doi: 10.1128/JB.182.20.5925-5930.2000.
8
Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy.
J Bacteriol. 1999 Nov;181(22):6865-75. doi: 10.1128/JB.181.22.6865-6875.1999.
9
Properties of Goethites Prepared under Acidic and Basic Conditions in the Presence of Silicate.
J Colloid Interface Sci. 1999 Aug 1;216(1):106-115. doi: 10.1006/jcis.1999.6285.
10
Effect of O-side-chain-lipopolysaccharide chemistry on metal binding.
Appl Environ Microbiol. 1999 Feb;65(2):489-98. doi: 10.1128/AEM.65.2.489-498.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验