Suppr超能文献

希瓦氏菌属脂多糖和荚膜的特性分析

Characterization of the lipopolysaccharides and capsules of Shewanella spp.

作者信息

Korenevsky Anton A, Vinogradov Evgeny, Gorby Yuri, Beveridge Terry J

机构信息

Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.

出版信息

Appl Environ Microbiol. 2002 Sep;68(9):4653-7. doi: 10.1128/AEM.68.9.4653-4657.2002.

Abstract

Electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining and (1)H, (13)C, and (31)P-nuclear magnetic resonance (NMR) were used to detect and characterize the lipopolysaccharides (LPSs) of several Shewanella species. Many expressed only rough LPS; however, approximately one-half produced smooth LPS (and/or capsular polysaccharides). Some LPSs were affected by growth temperature with increased chain length observed below 25 degrees C. Maximum LPS heterogeneity was found at 15 to 20 degrees C. Thin sections of freeze-substituted cells revealed that Shewanella oneidensis, S. algae, S. frigidimarina, and Shewanella sp. strain MR-4 possessed either O-side chains or capsular fringes ranging from 20 to 130 nm in thickness depending on the species. NMR detected unusual sugars in S. putrefaciens CN32 and S. algae BrY(DL). It is possible that the ability of Shewanella to adhere to solid mineral phases (such as iron oxides) could be affected by the composition and length of surface polysaccharide polymers. These same polymers in S. algae may also contribute to this opportunistic pathogen's ability to promote infection.

摘要

采用电子显微镜、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳银染法以及氢-1、碳-13和磷-31核磁共振(NMR)技术对几种希瓦氏菌属细菌的脂多糖(LPS)进行检测和特性分析。许多菌株仅表达粗糙型LPS;然而,约有一半的菌株产生光滑型LPS(和/或荚膜多糖)。一些LPS受生长温度影响,在25℃以下观察到链长增加。在15至20℃时发现LPS的异质性最大。冷冻置换细胞的超薄切片显示,奥奈达希瓦氏菌、海藻希瓦氏菌、嗜冷希瓦氏菌和希瓦氏菌属MR-4菌株根据菌种不同,具有厚度为20至130纳米的O侧链或荚膜边缘。NMR在腐败希瓦氏菌CN32和海藻希瓦氏菌BrY(DL)中检测到异常糖类。希瓦氏菌附着于固体矿物相(如氧化铁)的能力可能受表面多糖聚合物的组成和长度影响。海藻希瓦氏菌中的这些相同聚合物也可能有助于这种机会致病菌促进感染的能力。

相似文献

1
Characterization of the lipopolysaccharides and capsules of Shewanella spp.
Appl Environ Microbiol. 2002 Sep;68(9):4653-7. doi: 10.1128/AEM.68.9.4653-4657.2002.
3
The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides.
Microbiology (Reading). 2007 Jun;153(Pt 6):1872-1883. doi: 10.1099/mic.0.2006/003814-0.
4
Low-temperature growth of Shewanella oneidensis MR-1.
Appl Environ Microbiol. 2005 Feb;71(2):811-6. doi: 10.1128/AEM.71.2.811-816.2005.
5
Influence of lipopolysaccharide on the surface proton-binding behavior of Shewanella spp.
Curr Microbiol. 2007 Aug;55(2):152-7. doi: 10.1007/s00284-007-0077-2. Epub 2007 Jun 14.
6
The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide.
Carbohydr Res. 2003 Feb 7;338(4):385-8. doi: 10.1016/s0008-6215(02)00469-x.
9
The structure of the capsular polysaccharide of Shewanella oneidensis strain MR-4.
Carbohydr Res. 2005 Jul 25;340(10):1750-3. doi: 10.1016/j.carres.2005.04.009.

引用本文的文献

2
Identification of factors limiting the efficiency of transplanting extracellular electron transfer chains in .
Appl Environ Microbiol. 2025 Jun 18;91(6):e0068525. doi: 10.1128/aem.00685-25. Epub 2025 May 13.
3
Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex.
J Chem Inf Model. 2025 May 12;65(9):4568-4575. doi: 10.1021/acs.jcim.4c02382. Epub 2025 Apr 25.
4
infection in humans: Epidemiology, clinical features and pathogenicity.
Virulence. 2022 Dec;13(1):1515-1532. doi: 10.1080/21505594.2022.2117831.
5
Cell adhesion of to iron oxide minerals: Effect of different single crystal faces.
Geochem Trans. 2005 Dec 30;6(4):77. doi: 10.1186/1467-4866-6-77. eCollection 2005.
6
Adaptive Synthesis of a Rough Lipopolysaccharide in Geobacter sulfurreducens for Metal Reduction and Detoxification.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0096421. doi: 10.1128/AEM.00964-21. Epub 2021 Aug 4.
7
Isolation and Characterization of Phage Thanatos Infecting and Lysing and Promoting Nascent Biofilm Formation.
Front Microbiol. 2020 Sep 18;11:573260. doi: 10.3389/fmicb.2020.573260. eCollection 2020.
8
The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell. 2020 Apr 30;181(3):665-673.e10. doi: 10.1016/j.cell.2020.03.032. Epub 2020 Apr 13.

本文引用的文献

1
Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
Biotechnol Bioeng. 1988 Oct 20;32(9):1081-96. doi: 10.1002/bit.260320902.
2
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
Science. 1988 Jun 3;240(4857):1319-21. doi: 10.1126/science.240.4857.1319.
3
Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY.
Appl Environ Microbiol. 1996 Apr;62(4):1487-90. doi: 10.1128/aem.62.4.1487-1490.1996.
4
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
5
The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide.
Carbohydr Res. 2003 Feb 7;338(4):385-8. doi: 10.1016/s0008-6215(02)00469-x.
7
Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH.
Science. 2001 May 18;292(5520):1360-3. doi: 10.1126/science.1059567.
8
Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution.
Microbiology (Reading). 2001 Apr;147(Pt 4):995-1006. doi: 10.1099/00221287-147-4-995.
9
Humics as an electron donor for anaerobic respiration.
Environ Microbiol. 1999 Feb;1(1):89-98. doi: 10.1046/j.1462-2920.1999.00009.x.
10
A role for excreted quinones in extracellular electron transfer.
Nature. 2000 May 4;405(6782):94-7. doi: 10.1038/35011098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验