Norppa H
Laboratory of Molecular and Cellular Toxicology, Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FIN-00250 Helsinki, Finland.
Int J Hyg Environ Health. 2001 Oct;204(1):31-8. doi: 10.1078/1438-4639-00069.
Genetic polymorphisms that affect xenobiotic metabolism or cellular response to DNA damage can modulate individual sensitivity to genotoxins. Information on the effects of such polymorphisms on the level of chromosome damage may facilitate the identification of risk groups and increase the sensitivity of cytogenetic endpoints as biomarkers of genotoxic exposure and effect. Glutathione S-transferase M1 (GSTM1) is an important detoxification enzyme which, due to a homozygous gene deletion (null genotype), is lacking from about 50% of Caucasians. A higher level of DNA adducts and chromosome damage has been detected in lymphocytes of tobacco smokers and bus drivers who lack the GSTM1 gene. Other polymorphic glutathione S-transferases include GSTM3, GSTP1, and GSTT1. The GSTT1 null genotype (10-20% of Caucasians) has been associated with an increased "baseline" level of sister chromatid exchanges (SCEs) in lymphocytes. N-acetyltransferase 2 (NAT2), metabolizing xenobiotics with primary aromatic amine and hydrazine structures, is another important polymorphic phase II enzyme. Subjects having the NAT2 slow acetylator genotype appear to show an increased baseline frequency of lymphocyte CAs in the absence of identified environmental exposure. Besides human biomonitoring studies, genetic polymorphisms may be important in explaining individual variation in genotoxic response observed in genetic toxicology tests with human cells. Several studies have suggested that blood cultures from GSTT1 null and GSTM1 null individuals have increased in vitro sensitivity to various genotoxins. The best-known example is probably the diepoxybutane sensitivity of GSTT1 null donors. Recently discovered polymorphisms affecting DNA repair may be expected to be of special importance in modulating genotoxic effects; the first available studies have suggested that the exon 10 Arg399Gln polymorphism of XRCC1 gene (X-ray repair cross-complementing group 1) could affect individual genotoxic response. In conclusion, the genetic polymorphism of GSTM1 influences the frequency of chromosome damage in exposed humans, while that of GSTT1 and NAT2 affect the "baseline" level of such damage. Both GSTM1 and GSTT1 genotypes may shape the in vitro genotoxic response of human lymphocytes. The significance of DNA repair polymorphisms is presently unclear.
影响外源性物质代谢或细胞对DNA损伤反应的基因多态性可调节个体对基因毒素的敏感性。关于此类多态性对染色体损伤水平影响的信息,可能有助于识别风险群体,并提高细胞遗传学终点作为基因毒性暴露和效应生物标志物的敏感性。谷胱甘肽S-转移酶M1(GSTM1)是一种重要的解毒酶,由于纯合子基因缺失(无效基因型),约50%的高加索人缺乏该酶。在缺乏GSTM1基因的吸烟者和公交车司机的淋巴细胞中,已检测到较高水平的DNA加合物和染色体损伤。其他多态性谷胱甘肽S-转移酶包括GSTM3、GSTP1和GSTT1。GSTT1无效基因型(占高加索人的10 - 20%)与淋巴细胞中姐妹染色单体交换(SCE)的“基线”水平升高有关。N-乙酰转移酶2(NAT2)可代谢具有伯芳香胺和肼结构的外源性物质,是另一种重要的多态性II相酶。在未发现明确环境暴露的情况下,具有NAT2慢乙酰化基因型的个体似乎显示淋巴细胞染色体畸变(CA)的基线频率增加。除了人体生物监测研究外,基因多态性在解释人类细胞遗传毒理学试验中观察到的基因毒性反应的个体差异方面可能也很重要。多项研究表明,GSTT1无效和GSTM1无效个体的血培养物对各种基因毒素的体外敏感性增加。最著名的例子可能是GSTT1无效供体对1,4 - 丁二醇二缩水甘油醚的敏感性。最近发现的影响DNA修复的多态性可能在调节基因毒性效应方面具有特殊重要性;首批现有研究表明,XRCC1基因(X射线修复交叉互补组1)的外显子10 Arg399Gln多态性可能影响个体的基因毒性反应。总之,GSTM1的基因多态性影响暴露人群中染色体损伤的频率,而GSTT1和NAT2的基因多态性影响此类损伤的“基线”水平。GSTM1和GSTT1基因型均可影响人类淋巴细胞的体外基因毒性反应。目前尚不清楚DNA修复多态性的意义。