Norppa H
Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland.
Environ Health Perspect. 1997 Jun;105 Suppl 4(Suppl 4):829-35. doi: 10.1289/ehp.97105s4829.
Polymorphisms of xenobiotic-metabolizing enzymes, responsible for individual differences in metabolic activation and detoxification reactions, may profoundly modulate the effects of chemical carcinogens. In the case of genotoxic carcinogens, differences in biological effects due to genetic polymorphisms can be evaluated by cytogenetic methods such as the analysis of chromosomal aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (MN), and changes in chromosome number. These techniques can be applied to any exposure known to induce such alterations, without additional method development for each exposing agent. The influence of polymorphic genes on the cytogenetic effects of a carcinogen can quickly be tested in vitro using metabolically competent cells collected from donors representing different genotypes or phenotypes. For instance, erythrocytes from individuals positive for glutathione S-transferase T1 (GSTT1) express GSTT1, whereas GSTT1-null donors, having a homozygous deletion of the GSTT1 gene, completely lack this detoxification enzyme. This deficiency results in highly increased sensitivity to SCE induction in whole-blood lymphocyte cultures by 1,2:3,4-diepoxybutane, a reactive metabolite of 1,3-butadiene. The same cytogenetic techniques can also be applied as effect biomarkers in studies of human populations exposed to genotoxic carcinogens. For example, elevated rates of chromosome damage have been detected among smokers lacking glutathione S-transferase M1 (GSTM1-null genotype), and the baseline level of SCEs seems to be increased in GSTT1-null individuals. Information obtained from cytogenetic studies of genetic polymorphisms can be used, for example, to recognize the genotoxically relevant substrates of the polymorphic enzymes, to identify genotypes that are susceptible to these genotoxins, to improve in vitro genotoxicity tests utilizing human cells, to increase the sensitivity of cytogenetic endpoints as biomarkers of genotoxic effects in humans, and to direct mechanistic studies and cancer epidemiology.
外源性物质代谢酶的多态性负责代谢激活和解毒反应中的个体差异,可能会深刻调节化学致癌物的作用。对于遗传毒性致癌物,由于基因多态性导致的生物学效应差异可以通过细胞遗传学方法进行评估,如染色体畸变(CAs)分析、姐妹染色单体交换(SCEs)、微核(MN)以及染色体数目的变化。这些技术可应用于任何已知能诱导此类改变的暴露情况,无需针对每种暴露剂开发额外的方法。使用从代表不同基因型或表型的供体收集的具有代谢活性的细胞,可在体外快速测试多态性基因对致癌物细胞遗传学效应的影响。例如,谷胱甘肽S-转移酶T1(GSTT1)阳性个体的红细胞表达GSTT1,而GSTT1基因纯合缺失的GSTT1缺失供体则完全缺乏这种解毒酶。这种缺陷导致全血淋巴细胞培养物中对1,2:3,4-二环氧丁烷(1,3-丁二烯的一种活性代谢物)诱导的SCE高度敏感。同样的细胞遗传学技术也可作为效应生物标志物应用于接触遗传毒性致癌物的人群研究中。例如,在缺乏谷胱甘肽S-转移酶M1(GSTM1缺失基因型)的吸烟者中检测到染色体损伤率升高,并且在GSTT1缺失个体中SCE的基线水平似乎有所增加。从基因多态性的细胞遗传学研究中获得的信息可用于,例如,识别多态性酶的遗传毒性相关底物,鉴定易受这些遗传毒素影响的基因型,改进利用人类细胞的体外遗传毒性测试,提高细胞遗传学终点作为人类遗传毒性效应生物标志物的敏感性,以及指导机制研究和癌症流行病学。