Suppr超能文献

边缘无形体主要表面蛋白2唾液腺变体的特异性表达发生在中肠,是蜱传播过程中的早期事件。

Specific expression of Anaplasma marginale major surface protein 2 salivary gland variants occurs in the midgut and is an early event during tick transmission.

作者信息

Löhr Christiane V, Rurangirwa Fred R, McElwain Terry F, Stiller David, Palmer Guy H

机构信息

Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.

出版信息

Infect Immun. 2002 Jan;70(1):114-20. doi: 10.1128/IAI.70.1.114-120.2002.

Abstract

Infectivity of Anaplasma spp. develops when infected ticks feed on a mammalian host (transmission feed). Specific Anaplasma marginale major surface protein 2 (MSP2) variants are selected for within the tick and are expressed within the salivary glands. The aims of this study were to determine when and where MSP2 variant selection occurs in the tick, how MSP2 expression is regulated in salivary glands of transmission-feeding ticks, and whether the number of A. marginale organisms per salivary gland is significantly increased during transmission feeding. The South Idaho strain of A. marginale was used, as MSP2 expression is restricted to two variants, SGV1 and SGV2, in Dermacentor andersoni. Using Western blot, real-time PCR, and DNA sequencing analyses it was shown that restriction and expression of MSP2 occurs early in the midgut within the first 48 h of the blood meal, when ticks acquire infection. A. marginale is present in the tick salivary glands before transmission feeding is initiated, but the msp2 mRNA and MSP2 protein levels per A. marginale organism increase only minimally and transiently in salivary glands of transmission-feeding ticks compared to that of unfed ticks. A. marginale numbers per tick increase gradually in salivary glands of both transmission-fed and unfed ticks. It is concluded that MSP2 variant selection is an early event in the tick and that MSP2 variants SGV1 and SGV2 are expressed both in the midgut and salivary glands. While MSP2 may be required for infectivity, there is no strict temporal correlation between MSP2 expression and the development of infectivity.

摘要

无形体属(Anaplasma spp.)的感染力在受感染的蜱吸食哺乳动物宿主时(传播性吸食)形成。蜱体内会选择特定的边缘无形体主要表面蛋白2(MSP2)变体,并在唾液腺中表达。本研究的目的是确定蜱体内MSP2变体选择发生的时间和位置,传播性吸食蜱的唾液腺中MSP2表达是如何调控的,以及在传播性吸食过程中每个唾液腺内边缘无形体生物的数量是否显著增加。使用了边缘无形体的南爱达荷菌株,因为在安德逊革蜱(Dermacentor andersoni)中,MSP2的表达仅限于两种变体,即SGV1和SGV2。通过蛋白质免疫印迹、实时定量PCR和DNA测序分析表明,MSP2的限制和表达在蜱吸食血液的最初48小时内在中肠早期发生,此时蜱获得感染。在开始传播性吸食之前,边缘无形体就已存在于蜱的唾液腺中,但与未进食的蜱相比,传播性吸食蜱的唾液腺中每个边缘无形体生物的msp2 mRNA和MSP2蛋白水平仅略有且短暂地增加。在传播性吸食和未进食的蜱的唾液腺中,每个蜱的边缘无形体数量都逐渐增加。得出的结论是,MSP2变体选择是蜱体内的早期事件,并且MSP2变体SGV1和SGV2在中肠和唾液腺中均有表达。虽然MSP2可能是感染力所必需的,但MSP2表达与感染力发展之间没有严格的时间相关性。

相似文献

2
Strain diversity in major surface protein 2 expression during tick transmission of Anaplasma marginale.
Infect Immun. 2000 May;68(5):3023-7. doi: 10.1128/IAI.68.5.3023-3027.2000.
3
Restriction of major surface protein 2 (MSP2) variants during tick transmission of the ehrlichia Anaplasma marginale.
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3171-6. doi: 10.1073/pnas.96.6.3171.
4
Expression of Anaplasma marginale major surface protein 2 variants in persistently infected ticks.
Infect Immun. 2001 Aug;69(8):5151-6. doi: 10.1128/IAI.69.8.5151-5156.2001.
9
Major surface protein 1a effects tick infection and transmission of Anaplasma marginale.
Int J Parasitol. 2001 Dec;31(14):1705-14. doi: 10.1016/s0020-7519(01)00287-9.

引用本文的文献

1
The genus Anaplasma: drawing back the curtain on tick-pathogen interactions.
Pathog Dis. 2021 Apr 22;79(5). doi: 10.1093/femspd/ftab022.
2
Antigenic Variation in Bacterial Pathogens.
Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.VMBF-0005-2015.
3
Superinfection Exclusion of the Ruminant Pathogen Anaplasma marginale in Its Tick Vector Is Dependent on the Time between Exposures to the Strains.
Appl Environ Microbiol. 2016 May 16;82(11):3217-3224. doi: 10.1128/AEM.00190-16. Print 2016 Jun 1.
5
Knockout of an outer membrane protein operon of Anaplasma marginale by transposon mutagenesis.
BMC Genomics. 2014 Apr 11;15:278. doi: 10.1186/1471-2164-15-278.
6
Antigenic variation and transmission fitness as drivers of bacterial strain structure.
Cell Microbiol. 2013 Dec;15(12):1969-75. doi: 10.1111/cmi.12182. Epub 2013 Aug 28.
8
Comparative genomics and transcriptomics of trait-gene association.
BMC Genomics. 2012 Nov 26;13:669. doi: 10.1186/1471-2164-13-669.
10
Temporal characterisation of the organ-specific Rhipicephalus microplus transcriptional response to Anaplasma marginale infection.
Int J Parasitol. 2011 Jul;41(8):851-60. doi: 10.1016/j.ijpara.2011.03.003. Epub 2011 Apr 7.

本文引用的文献

1
Expression of Anaplasma marginale major surface protein 2 variants in persistently infected ticks.
Infect Immun. 2001 Aug;69(8):5151-6. doi: 10.1128/IAI.69.8.5151-5156.2001.
3
Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4130-5. doi: 10.1073/pnas.071056298.
5
Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics.
Infect Immun. 2000 Nov;68(11):6133-8. doi: 10.1128/IAI.68.11.6133-6138.2000.
7
Strain diversity in major surface protein 2 expression during tick transmission of Anaplasma marginale.
Infect Immun. 2000 May;68(5):3023-7. doi: 10.1128/IAI.68.5.3023-3027.2000.
8
Expression of polymorphic msp1beta genes during acute anaplasma Marginale rickettsemia.
Infect Immun. 2000 Apr;68(4):1946-52. doi: 10.1128/IAI.68.4.1946-1952.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验