Seal R P, Shigeri Y, Eliasof S, Leighton B H, Amara S G
Vollum Institute, Howard Hughes Medical Institute, Oregon Health Sciences University L-474, Portland, OR 97201, USA.
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15324-9. doi: 10.1073/pnas.011400198.
Excitatory amino acid transporters (EAATs) buffer and remove synaptically released L-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in both the forward and reverse directions without affecting activation of the anion conductance. EC(50)s for L-glutamate and sodium are significantly lower after modification, consistent with kinetic models of the transport cycle that link anion channel gating to an early step in substrate translocation. Also, decreasing the pH from 7.5 to 6.5 decreases the EC(50) for L-glutamate to activate the anion conductance, without affecting the EC(50) for the entire transport cycle. These findings demonstrate for the first time a structural separation of transport and the uncoupled anion flux. Moreover, they shed light on some controversial aspects of the EAAT transport cycle, including the kinetics of proton binding and anion conductance activation.
兴奋性氨基酸转运体(EAATs)缓冲并清除突触释放的L-谷氨酸,使其浓度维持在神经毒性水平以下。EAATs还介导一种热力学解偶联的底物门控阴离子电导,这可能会调节细胞兴奋性。在此,我们证明,对EAAT1 C末端结构域内取代的半胱氨酸进行修饰会消除其正向和反向转运,而不影响阴离子电导的激活。修饰后,L-谷氨酸和钠的半数有效浓度(EC50)显著降低,这与将阴离子通道门控与底物转运早期步骤相联系的转运循环动力学模型一致。此外,将pH从7.5降至6.5会降低L-谷氨酸激活阴离子电导的EC50,而不影响整个转运循环的EC50。这些发现首次证明了转运与解偶联阴离子通量的结构分离。此外,它们还揭示了EAAT转运循环中一些有争议的方面,包括质子结合动力学和阴离子电导激活。