Suppr超能文献

两种相似病毒的适应性概况。

Profiles of adaptation in two similar viruses.

作者信息

Holder K K, Bull J J

机构信息

Section of Integrative Biology, Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1023, USA.

出版信息

Genetics. 2001 Dec;159(4):1393-404. doi: 10.1093/genetics/159.4.1393.

Abstract

The related bacteriophages phiX174 and G4 were adapted to the inhibitory temperature of 44 degrees and monitored for nucleotide changes throughout the genome. Phage were evolved by serial transfer at low multiplicity of infection on rapidly dividing bacteria to select genotypes with the fastest rates of reproduction. Both phage showed overall greater fitness effects per substitution during the early stages of adaptation. The fitness of phiX174 improved from -0.7 to 5.6 doublings of phage concentration per generation. Five missense mutations were observed. The earliest two mutations accounted for 85% of the ultimate fitness gain. In contrast, G4 required adaptation to the intermediate temperature of 41.5 degrees before it could be maintained at 44 degrees. Its fitness at 44 degrees increased from -2.7 to 3.2, nearly the same net gain as in phiX174, but with three times the opportunity for adaptation. Seventeen mutations were observed in G4: 14 missense, 2 silent, and 1 intergenic. The first 3 missense substitutions accounted for over half the ultimate fitness increase. Although the expected pattern of periodic selective sweeps was the most common one for both phage, some mutations were lost after becoming frequent, and long-term polymorphism was observed. This study provides the greatest detail yet in combining fitness profiles with the underlying pattern of genetic changes, and the results support recent theories on the range of fitness effects of substitutions fixed during adaptation.

摘要

将相关噬菌体φX174和G4适应44摄氏度的抑制温度,并监测整个基因组的核苷酸变化。通过在快速分裂的细菌上以低感染复数进行连续传代来进化噬菌体,以选择繁殖速度最快的基因型。在适应的早期阶段,两种噬菌体每发生一次替换总体上都表现出更大的适应性效应。φX174的适应性从每代噬菌体浓度增加-0.7倍提高到5.6倍。观察到五个错义突变。最早的两个突变占最终适应性增加的85%。相比之下,G4需要先适应41.5摄氏度的中间温度,才能在44摄氏度下维持。它在44摄氏度时的适应性从-2.7提高到3.2,净增加量与φX174几乎相同,但有三倍的适应机会。在G4中观察到17个突变:14个错义突变, 2个沉默突变和1个基因间突变。前3个错义替换占最终适应性增加的一半以上。尽管周期性选择性清除的预期模式是两种噬菌体最常见的模式,但一些突变在变得频繁后消失了,并观察到了长期多态性。这项研究在将适应性概况与潜在的遗传变化模式相结合方面提供了迄今为止最详细的信息,结果支持了最近关于适应过程中固定替换的适应性效应范围的理论。

相似文献

1
Profiles of adaptation in two similar viruses.
Genetics. 2001 Dec;159(4):1393-404. doi: 10.1093/genetics/159.4.1393.
2
Elevating fitness after a horizontal gene exchange in bacteriophage φX174.
Virology. 2017 Jan 15;501:25-34. doi: 10.1016/j.virol.2016.10.029. Epub 2016 Nov 14.
3
Adaptive molecular evolution for 13,000 phage generations: a possible arms race.
Genetics. 2005 May;170(1):19-31. doi: 10.1534/genetics.104.034488. Epub 2005 Jan 31.
4
Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174.
BMC Evol Biol. 2010 Dec 3;10:378. doi: 10.1186/1471-2148-10-378.
5
The Kinetic and Thermodynamic Aftermath of Horizontal Gene Transfer Governs Evolutionary Recovery.
Mol Biol Evol. 2015 Oct;32(10):2571-84. doi: 10.1093/molbev/msv130. Epub 2015 May 28.
6
The distribution of mutational fitness effects of phage φX174 on different hosts.
Evolution. 2012 Nov;66(11):3495-507. doi: 10.1111/j.1558-5646.2012.01691.x. Epub 2012 May 31.
7
The genetic basis of thermal reaction norm evolution in lab and natural phage populations.
PLoS Biol. 2006 Jul;4(7):e201. doi: 10.1371/journal.pbio.0040201.
8
The rate of compensatory mutation in the DNA bacteriophage phiX174.
Genetics. 2005 Jul;170(3):989-99. doi: 10.1534/genetics.104.039438. Epub 2005 May 23.
9
Exceptional convergent evolution in a virus.
Genetics. 1997 Dec;147(4):1497-507. doi: 10.1093/genetics/147.4.1497.
10
The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host.
Sci Rep. 2018 May 29;8(1):8350. doi: 10.1038/s41598-018-25914-7.

引用本文的文献

1
Structural basis for Salmonella infection by two Microviridae phages.
Commun Biol. 2025 Aug 6;8(1):1166. doi: 10.1038/s42003-025-08595-7.
2
The phoenix hypothesis of speciation.
Proc Biol Sci. 2022 Nov 30;289(1987):20221186. doi: 10.1098/rspb.2022.1186. Epub 2022 Nov 16.
3
Heat adaptation of phage T7 under an extended genetic code.
Virus Evol. 2021 Dec 1;7(2):veab100. doi: 10.1093/ve/veab100. eCollection 2021 Sep.
5
Evolution of resistance under alternative models of selective interference.
J Evol Biol. 2021 Oct;34(10):1608-1623. doi: 10.1111/jeb.13919. Epub 2021 Sep 25.
6
Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage.
Int J Mol Sci. 2021 Jun 24;22(13):6815. doi: 10.3390/ijms22136815.
10
Model genotype-phenotype mappings and the algorithmic structure of evolution.
J R Soc Interface. 2019 Nov 29;16(160):20190332. doi: 10.1098/rsif.2019.0332. Epub 2019 Nov 6.

本文引用的文献

1
Genetic recombination in phage S13.
Virology. 1959 Apr;7(4):465-7. doi: 10.1016/0042-6822(59)90075-3.
2
Genetic architecture of thermal adaptation in Escherichia coli.
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):525-30. doi: 10.1073/pnas.98.2.525. Epub 2001 Jan 9.
3
Genetics of alpha-amanitin resistance in a natural population of Drosophila melanogaster.
Heredity (Edinb). 2000 Aug;85 ( Pt 2):184-90. doi: 10.1046/j.1365-2540.2000.00729.x.
5
Adaptation and the cost of complexity.
Evolution. 2000 Feb;54(1):13-20. doi: 10.1111/j.0014-3820.2000.tb00002.x.
6
Big-benefit mutations in a bacteriophage inhibited with heat.
Mol Biol Evol. 2000 Jun;17(6):942-50. doi: 10.1093/oxfordjournals.molbev.a026375.
7
Predicting the evolution of human influenza A.
Science. 1999 Dec 3;286(5446):1921-5. doi: 10.1126/science.286.5446.1921.
8
Different trajectories of parallel evolution during viral adaptation.
Science. 1999 Jul 16;285(5426):422-4. doi: 10.1126/science.285.5426.422.
9
Prisoner's dilemma in an RNA virus.
Nature. 1999 Apr 1;398(6726):441-3. doi: 10.1038/18913.
10
Genomic evolution during a 10,000-generation experiment with bacteria.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3807-12. doi: 10.1073/pnas.96.7.3807.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验