Suppr超能文献

13000代噬菌体的适应性分子进化:一场可能的军备竞赛。

Adaptive molecular evolution for 13,000 phage generations: a possible arms race.

作者信息

Wichman Holly A, Millstein Jack, Bull J J

机构信息

Department of Biological Sciences, University of Idaho, Moscow, 83844-3051, USA.

出版信息

Genetics. 2005 May;170(1):19-31. doi: 10.1534/genetics.104.034488. Epub 2005 Jan 31.

Abstract

Bacteriophage phiX174 was evolved on a continuous supply of sensitive hosts for 180 days ( approximately 13,000 phage generations). The average rate of nucleotide substitution was nearly 0.2% (11 substitutions)/20 days, and, surprisingly, substitutions accumulated in a clock-like manner throughout the study, except for a low rate during the first 20 days. Rates of silent and missense substitutions varied over time and among genes. Approximately 40% of the 71 missense changes and 25% of the 58 silent changes have been observed in previous adaptations; the rate of parallel substitution was highest in the early phase of the evolution, but 7% of the later changes had evolved in previous studies of much shorter duration. Several lines of evidence suggest that most of the changes were adaptive, even many of the silent substitutions. The sustained, high rate of adaptive evolution for 180 days defies a model of adaptation to a constant environment. We instead suggest that continuing molecular evolution reflects a potentially indefinite arms race, stemming from high levels of co-infection and the resulting conflict among genomes competing within the same cell.

摘要

噬菌体phiX174在持续供应敏感宿主的条件下进化了180天(约13000代噬菌体)。核苷酸替换的平均速率接近0.2%(11次替换)/20天,令人惊讶的是,在整个研究过程中,替换以类似时钟的方式积累,除了最初20天的低速率期。沉默替换和错义替换的速率随时间和基因而变化。在之前的适应性研究中已经观察到71个错义变化中的约40%以及58个沉默变化中的25%;平行替换的速率在进化早期最高,但后期变化中有7%在之前持续时间短得多的研究中已经出现。几条证据表明,大多数变化是适应性的,甚至许多沉默替换也是如此。180天持续的高适应性进化速率不符合适应恒定环境的模型。相反,我们认为持续的分子进化反映了一场可能无限期的军备竞赛,这源于高水平的共感染以及同一细胞内竞争基因组之间由此产生的冲突。

相似文献

1
Adaptive molecular evolution for 13,000 phage generations: a possible arms race.
Genetics. 2005 May;170(1):19-31. doi: 10.1534/genetics.104.034488. Epub 2005 Jan 31.
2
Experimental evolution of viruses: Microviridae as a model system.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2495-501. doi: 10.1098/rstb.2010.0053.
3
Experimental evolution recapitulates natural evolution.
Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1677-84. doi: 10.1098/rstb.2000.0731.
4
Profiles of adaptation in two similar viruses.
Genetics. 2001 Dec;159(4):1393-404. doi: 10.1093/genetics/159.4.1393.
5
The rate of compensatory mutation in the DNA bacteriophage phiX174.
Genetics. 2005 Jul;170(3):989-99. doi: 10.1534/genetics.104.039438. Epub 2005 May 23.
6
Genomic evolution in a virus under specific selection for host recognition.
Infect Genet Evol. 2008 Dec;8(6):825-34. doi: 10.1016/j.meegid.2008.08.008. Epub 2008 Aug 28.
7
Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174.
BMC Evol Biol. 2010 Dec 3;10:378. doi: 10.1186/1471-2148-10-378.
8
Exceptional convergent evolution in a virus.
Genetics. 1997 Dec;147(4):1497-507. doi: 10.1093/genetics/147.4.1497.
9
Different trajectories of parallel evolution during viral adaptation.
Science. 1999 Jul 16;285(5426):422-4. doi: 10.1126/science.285.5426.422.
10
Mutation rate of bacteriophage ΦX174 modified through changes in GATC sequence context.
Infect Genet Evol. 2011 Oct;11(7):1820-2. doi: 10.1016/j.meegid.2011.08.024. Epub 2011 Aug 31.

引用本文的文献

1
The untapped potential of phage model systems as therapeutic agents.
Virus Evol. 2024 Jan 13;10(1):veae007. doi: 10.1093/ve/veae007. eCollection 2024.
3
Ecological Approach to Understanding Superinfection Inhibition in Bacteriophage.
Viruses. 2021 Jul 17;13(7):1389. doi: 10.3390/v13071389.
5
Long-term experimental evolution of HIV-1 reveals effects of environment and mutational history.
PLoS Biol. 2020 Dec 28;18(12):e3001010. doi: 10.1371/journal.pbio.3001010. eCollection 2020 Dec.
6
ΦX174 Attenuation by Whole-Genome Codon Deoptimization.
Genome Biol Evol. 2021 Feb 3;13(2). doi: 10.1093/gbe/evaa214.
8
Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes.
Microbiologyopen. 2020 Feb;9(2):e968. doi: 10.1002/mbo3.968. Epub 2019 Nov 28.
10
Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations.
Genetics. 2017 Mar;205(3):1305-1318. doi: 10.1534/genetics.116.194597. Epub 2017 Jan 18.

本文引用的文献

1
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
2
MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE.
Evolution. 1984 Sep;38(5):1116-1129. doi: 10.1111/j.1558-5646.1984.tb00380.x.
3
Relative fitness can decrease in evolving asexual populations of S. cerevisiae.
Nature. 1983;306(5941):368-70. doi: 10.1038/306368a0.
4
Microbial evolution in laboratory environments.
Res Microbiol. 2004 Jun;155(5):311-8. doi: 10.1016/j.resmic.2004.01.013.
5
The phiX174 protein J mediates DNA packaging and viral attachment to host cells.
J Mol Biol. 2004 Apr 9;337(5):1109-22. doi: 10.1016/j.jmb.2004.02.033.
7
Experimental evolution yields hundreds of mutations in a functional viral genome.
J Mol Evol. 2003 Sep;57(3):241-8. doi: 10.1007/s00239-003-2470-1.
8
KINETICS OF BACTERIOPHAGE RELEASE BY SINGLE CELLS OF PHI X174-INFECTED E. COLI.
J Mol Biol. 1963 Aug;7:206-8. doi: 10.1016/s0022-2836(63)80046-7.
9
Genetic recombination between phages S13 and phi-X174.
Virology. 1963 Feb;19:239-40. doi: 10.1016/0042-6822(63)90015-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验