Suppr超能文献

互信息准则在计算机辅助诊断特征选择中的应用。

Application of the mutual information criterion for feature selection in computer-aided diagnosis.

作者信息

Tourassi G D, Frederick E D, Markey M K, Floyd C E

机构信息

Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Med Phys. 2001 Dec;28(12):2394-402. doi: 10.1118/1.1418724.

Abstract

The purpose of this study was to investigate an information theoretic approach to feature selection for computer-aided diagnosis (CAD). The approach is based on the mutual information (MI) concept. MI measures the general dependence of random variables without making any assumptions about the nature of their underlying relationships. Consequently, MI can potentially offer some advantages over feature selection techniques that focus only on the linear relationships of variables. This study was based on a database of statistical texture features extracted from perfusion lung scans. The ultimate goal was to select the optimal subset of features for the computer-aided diagnosis of acute pulmonary embolism (PE). Initially, the study addressed issues regarding the approximation of MI in a limited dataset as it is often the case in CAD applications. The MI selected features were compared to those features selected using stepwise linear discriminant analysis and genetic algorithms for the same PE database. Linear and nonlinear decision models were implemented to merge the selected features into a final diagnosis. Results showed that the MI is an effective feature selection criterion for nonlinear CAD models overcoming some of the well-known limitations and computational complexities of other popular feature selection techniques in the field.

摘要

本研究的目的是探讨一种用于计算机辅助诊断(CAD)的基于信息论的特征选择方法。该方法基于互信息(MI)概念。互信息衡量随机变量之间的一般依赖性,而无需对其潜在关系的性质做任何假设。因此,与仅关注变量线性关系的特征选择技术相比,互信息可能具有一些优势。本研究基于从灌注肺扫描中提取的统计纹理特征数据库。最终目标是为急性肺栓塞(PE)的计算机辅助诊断选择最佳特征子集。最初,该研究解决了在有限数据集中互信息近似的问题,这在CAD应用中很常见。将互信息选择的特征与针对同一PE数据库使用逐步线性判别分析和遗传算法选择的特征进行比较。实施线性和非线性决策模型,将所选特征合并为最终诊断。结果表明,互信息是用于非线性CAD模型的有效特征选择标准,克服了该领域其他流行特征选择技术的一些众所周知的局限性和计算复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验