Trogan Eugene, Choudhury Robin P, Dansky Hayes M, Rong James X, Breslow Jan L, Fisher Edward A
Department of Medicine and The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2234-9. doi: 10.1073/pnas.042683999. Epub 2002 Feb 12.
Macrophage foam cells are integral in the development of atherosclerotic lesions. Gene expression analysis of lesional macrophage foam cells is complicated by the cellular heterogeneity of atherosclerotic plaque and the presence of lesions of various degrees of severity. To overcome these limitations, we tested the ability of laser capture microdissection (LCM) and real-time quantitative reverse transcription PCR to selectively analyze RNA from lesional macrophages of apolipoprotein E (apoE)-deficient mice. Proximal aortic tissue sections were immunostained for macrophagespecific CD68/macrosialin by a rapid (approximately 15-min) protocol. Alternating sections from each animal were used to isolate RNA either from entire sections (analogous to isolation from whole tissue) or by LCM selection of CD68-positive cells. We measured the mRNA levels of CD68, a macrophage-specific marker, alpha-actin, a smooth muscle cell marker, and cyclophilin A, a control gene. Compared with whole sections, CD68 mRNA levels were greatly enriched (33.6-fold) in the laser-captured lesional macrophages. In contrast to whole sections, LCM-derived RNA had undetectable levels of alpha-actin. To illustrate the ability of this method to measure changes in lesional macrophage gene expression, we injected 100 microg of lipopolysaccharide i.p. into apoE-deficient mice and detected in laser-captured lesional macrophages increased mRNA expression for vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, and monocyte chemoattractant protein-1 (11.9-, 32.5-, and 31.0-fold, respectively). By selectively enriching foam cell RNA, LCM provides a powerful approach to study the in situ expression and regulation of atherosclerosis-related genes. This approach will allow the study of macrophage gene expression under various conditions of plaque formation, regression, and response to genetic and environmental perturbations.
巨噬细胞源性泡沫细胞在动脉粥样硬化病变的发展过程中不可或缺。由于动脉粥样硬化斑块的细胞异质性以及不同严重程度病变的存在,对病变巨噬细胞源性泡沫细胞进行基因表达分析变得复杂。为克服这些限制,我们测试了激光捕获显微切割(LCM)和实时定量逆转录PCR技术,以选择性分析载脂蛋白E(apoE)缺陷小鼠病变巨噬细胞中的RNA。采用快速(约15分钟)方案,对主动脉近端组织切片进行巨噬细胞特异性CD68/巨唾液酸蛋白免疫染色。从每只动物的交替切片中,要么从整个切片中分离RNA(类似于从全组织中分离),要么通过LCM选择CD68阳性细胞来分离RNA。我们测量了巨噬细胞特异性标志物CD68、平滑肌细胞标志物α-肌动蛋白以及对照基因亲环蛋白A的mRNA水平。与整个切片相比,激光捕获的病变巨噬细胞中CD68 mRNA水平显著富集(33.6倍)。与整个切片不同,LCM获得的RNA中α-肌动蛋白水平检测不到。为说明该方法测量病变巨噬细胞基因表达变化的能力,我们向apoE缺陷小鼠腹腔注射100μg脂多糖,并在激光捕获的病变巨噬细胞中检测到血管细胞黏附分子-1、细胞间黏附分子-(11.9倍、32.5倍和31.0倍)。通过选择性富集泡沫细胞RNA,LCM为研究动脉粥样硬化相关基因的原位表达和调控提供了一种强大的方法。这种方法将有助于研究在斑块形成、消退以及对遗传和环境扰动反应的各种条件下巨噬细胞的基因表达。