Triposkiadis F, Ghiokas S, Skoularigis I, Kotsakis A, Giannakoulis I, Thanopoulos V
Department of Cardiology, University of Thessaly, Larissa, Greece.
Eur J Clin Invest. 2002 Jan;32(1):16-23. doi: 10.1046/j.0014-2972.2001.00939.x.
Despite the increasing involvement of child athletes in intensive training regimens, little is known about the influence of such training on autonomic regulation and cardiac structure and function.
Twenty-five highly trained (12-14 h weekly for at least 4 years) swimmers (aged 11.9 +/- 1.6 years; 15 males, 10 females) and 20 non-training normal children who served as controls (aged 11.3 +/- 0.6 years; 14 males, 6 females) were studied. Heart rate variability analysis in the time and frequency domains was performed on 15 min resting heart rate acquisitions. Left ventricular morphology and systolic function was studied with two-dimensional guided M-mode echocardiography. The transmitral flow velocity profile was assessed with pulsed Doppler. Parameters measured included the peak early (E) and peak late (A) transmitral flow velocity and their ratio (E/A). Left atrial (LA) volumes were determined at mitral valve (MV) opening (maximal, Vmax), at onset of atrial systole (P wave of the ECG, Vp), and at MV closure (minimal, Vmin) from the apical 2- and 4-chamber views, using the biplane area-length method. LA systolic function was assessed with the LA active emptying volume (ACTEV) = Vp-Vmin and the LA active emptying fraction (ACTEF) = ACTEV/Vp.
Average NN (967.1 +/- 141.8 vs. 768.4 +/-85.6 ms, P < 0.0001), logSDNN (1.89 +/- 0.14 vs. 1.80 +/- 0.17 ms, P < 0.05), logPNN 50% (1.66 +/- 0.23 vs. 1.46 +/- 0.35, p < 0.05), and logHF power (3.13 +/- 0.32 vs. 2.95 +/- 0.26 ms2, p < 0.05) were greater in swimmers than in controls. Left ventricular end-diastolic diameter was greater (32.3 +/- 3.3 vs. 29.5 +/- 3.3 mm m(-2), P < 0.02) in swimmers than in controls, whereas the left ventricular septal (5.9 +/- 1 vs. 5.6 +/- 0.8 mm m(-2), P = NS) and posterior wall thickness (5.7 +/-0.9 vs. 5.4 +/- 0.8 mm m(-2), P = NS) were similar in the two groups. The E/A ratio was greater (2.2 +/- 0.49 vs. 1.78 +/- 0.36, P < 0.003) whereas the A velocity was lower (0.41 +/- 0.09 vs. 0.50 +/- 0.13 m s(-1), P < or = 0.02) in swimmers than in controls. Vmax was greater (18.6 +/-4.8 vs. 14.9 +/-5.3 cm m(-2), P < 0.03), whereas ACTEF was lower (36 +/- 12% vs. 44.2 +/- 12%, P < 0.04) in swimmers than in controls.
Cardiac adaptation to intensive training in prepubertal swimmers includes vagal predominance, a mild increase in left ventricular dimensions without significant changes in septal or posterior wall thickness, and increased LA size associated with depressed LA systolic function. Evaluation of LA size and systolic function may contribute to a better understanding of the characteristics of the 'athlete's heart' in children and to the differential diagnosis between left ventricular adaptive and pathologic changes.
尽管儿童运动员越来越多地参与强化训练方案,但对于此类训练对自主神经调节以及心脏结构和功能的影响却知之甚少。
研究了25名经过高强度训练(每周12 - 14小时,至少持续4年)的游泳运动员(年龄11.9±1.6岁;男性15名,女性10名)以及20名作为对照的未训练正常儿童(年龄11.3±0.6岁;男性14名,女性6名)。对15分钟静息心率采集进行时域和频域的心率变异性分析。采用二维引导M型超声心动图研究左心室形态和收缩功能。用脉冲多普勒评估二尖瓣血流速度剖面图。测量的参数包括二尖瓣血流速度的早期峰值(E)和晚期峰值(A)及其比值(E/A)。使用双平面面积 - 长度法,从心尖两腔和四腔视图确定二尖瓣开放时(最大,Vmax)、心房收缩开始时(心电图P波,Vp)以及二尖瓣关闭时(最小,Vmin)的左心房(LA)容积。用左心房主动排空容积(ACTEV)= Vp - Vmin和左心房主动排空分数(ACTEF)= ACTEV / Vp评估左心房收缩功能。
游泳运动员的平均NN(967.1±141.8对768.4±85.6毫秒,P < 0.000)、logSDNN(1.89±0.14对1.80±0.17毫秒,P < 0.05)、logPNN 50%(1.66±0.23对1.46±0.35,P < 0.05)以及logHF功率(3.13±0.32对2.95±0.26毫秒²,P < 0.05)均高于对照组。游泳运动员的左心室舒张末期直径大于对照组(32.3±3.3对29.5±3.3毫米/米²,P < 0.02),而两组的左心室间隔厚度(5.9±1对5.6±0.8毫米/米²,P =无显著差异)和后壁厚度(5.7±0.9对5.4±0.8毫米/米²,P =无显著差异)相似。游泳运动员的E/A比值更高(2.2±0.49对1.78±0.36,P < 0.003),而A速度更低(0.41±0.09对0.50±0.13米/秒,P≤0.02)。游泳运动员的Vmax更大(18.6±4.8对14.9±5.3厘米/米²,P < 0.03),而ACTEF更低(36±12%对44.2±12%,P < 0.04)。
青春期前游泳运动员心脏对强化训练的适应性包括迷走神经占优势、左心室尺寸轻度增加,而间隔或后壁厚度无显著变化,以及左心房大小增加且伴有左心房收缩功能降低。评估左心房大小和收缩功能可能有助于更好地理解儿童“运动员心脏”的特征以及左心室适应性变化与病理性变化之间的鉴别诊断。