Suppr超能文献

通过主链氢键的侧链屏蔽实现α-螺旋稳定。

Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.

作者信息

García Angel E, Sanbonmatsu Kevin Y

机构信息

Theoretical Division, T10 MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.

Abstract

We study atomic models of the thermodynamics of the structural transition of peptides that form alpha-helices. The effect of sequence variation on alpha-helix formation for alanine-rich peptides, Ac-Ala21-methyl amide (A21) and Ac-A5 (AAARA)3A-methyl amide (Fs peptide), is investigated by atomic simulation studies of the thermodynamics of the helix-coil transition in explicit water. The simulations show that the guanidinium group in the Arg side chains in the Fs peptide interacts with the carbonyl group four amino acids upstream in the chain and desolvates backbone hydrogen bonds. This desolvation can be directly correlated with a higher probability of hydrogen bond formation. We find that Fs has higher helical content than A21 at all temperatures. A small modification in the amber force field reproduces the experimental helical content and helix-coil transition temperatures for the Fs peptide.

摘要

我们研究了形成α-螺旋的肽结构转变热力学的原子模型。通过在显式水中对螺旋-线团转变热力学进行原子模拟研究,考察了序列变异对富含丙氨酸的肽Ac-Ala21-甲酰胺(A21)和Ac-A5(AAARA)3A-甲酰胺(Fs肽)的α-螺旋形成的影响。模拟结果表明,Fs肽中Arg侧链的胍基与链中上游四个氨基酸处的羰基相互作用,使主链氢键去溶剂化。这种去溶剂化与氢键形成的更高概率直接相关。我们发现,在所有温度下,Fs的螺旋含量都高于A21。对琥珀色力场进行的微小修改重现了Fs肽的实验螺旋含量和螺旋-线团转变温度。

相似文献

1
Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.
2
Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.
3
Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
J Phys Chem B. 2007 Feb 22;111(7):1834-45. doi: 10.1021/jp0666840. Epub 2007 Jan 26.
4
Free energy determinants of secondary structure formation: I. alpha-Helices.
J Mol Biol. 1995 Sep 22;252(3):351-65. doi: 10.1006/jmbi.1995.0502.
5
Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides.
J Phys Chem B. 2006 Oct 19;110(41):20555-61. doi: 10.1021/jp061781e.
8
Thermodynamic model of secondary structure for alpha-helical peptides and proteins.
Biopolymers. 1997 Aug;42(2):239-69. doi: 10.1002/(SICI)1097-0282(199708)42:2<239::AID-BIP12>3.0.CO;2-G.
9
Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
J Mol Biol. 2000 Jul 28;300(5):1335-59. doi: 10.1006/jmbi.2000.3901.

引用本文的文献

2
Redefining the Limits of Functional Continuity in the Early Evolution of P-Loop NTPases.
Mol Biol Evol. 2025 Apr 1;42(4). doi: 10.1093/molbev/msaf055.
3
Backbone Hydration of -Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity.
Mol Phys. 2024;122(21-22). doi: 10.1080/00268976.2024.2323637. Epub 2024 Mar 5.
5
Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes.
Biomacromolecules. 2024 May 13;25(5):2838-2851. doi: 10.1021/acs.biomac.4c00002. Epub 2024 Apr 3.
7
Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field.
J Chem Theory Comput. 2023 Jun 13;19(11):3251-3275. doi: 10.1021/acs.jctc.3c00039. Epub 2023 May 11.
8
Engineering enhanced thermostability into the nitrile hydratase.
Curr Res Struct Biol. 2022 Aug 19;4:256-270. doi: 10.1016/j.crstbi.2022.07.002. eCollection 2022.
9
10
Exploring the Energy Landscape of Riboswitches Using Collective Variables Based on Tertiary Contacts.
J Mol Biol. 2022 Sep 30;434(18):167788. doi: 10.1016/j.jmb.2022.167788. Epub 2022 Aug 11.

本文引用的文献

2
Exploring the energy landscape of a beta hairpin in explicit solvent.
Proteins. 2001 Feb 15;42(3):345-54. doi: 10.1002/1097-0134(20010215)42:3<345::aid-prot50>3.0.co;2-h.
5
Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities.
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10786-91. doi: 10.1073/pnas.200343197.
6
Conformational diffusion and helix formation kinetics.
Phys Rev Lett. 2000 Sep 18;85(12):2637-40. doi: 10.1103/PhysRevLett.85.2637.
8
Interaction between water and polar groups of the helix backbone: an important determinant of helix propensities.
Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4930-5. doi: 10.1073/pnas.96.9.4930.
9
Folding-unfolding thermodynamics of a beta-heptapeptide from equilibrium simulations.
Proteins. 1999 Feb 15;34(3):269-80. doi: 10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>3.0.co;2-3.
10
Reversible peptide folding in solution by molecular dynamics simulation.
J Mol Biol. 1998 Jul 31;280(5):925-32. doi: 10.1006/jmbi.1998.1885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验