Suppr超能文献

α-螺旋肽的主链水合作用:氢键及表面疏水性/亲水性

Backbone Hydration of -Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity.

作者信息

Eltareb Ali, Rivera-Cancel Janel, Lopez Gustavo E, Giovambattista Nicolas

机构信息

Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States.

Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.

出版信息

Mol Phys. 2024;122(21-22). doi: 10.1080/00268976.2024.2323637. Epub 2024 Mar 5.

Abstract

The stability of proteins and small peptides depends on the way they interact with the surrounding water molecules. For small peptides, such as -helical polyalanine (polyALA), water molecules can weaken the intramolecular hydrogen-bonds (HB) formed between the peptide backbone O and NH groups which are responsible for the -helix structure. Here, we perform molecular dynamics simulations to study the hydration of polyALA, polyserine (polySER), and other homopolymer peptide -helices at different temperatures and pressures. We find that water molecules form HB with most polyALA carbonyl O atoms, despite ALA hydrophobic CH side chain. Similar water-peptide backbone HB are found in other (hydrophobic and hydrophilic) homopolymer -helices with large side chains, including polyvaline, polyleucine, and polyphenyalanine. A novel hydration mechanism is observed in polyserine (polySER): the backbone peptide rarely forms HB with water and, instead, the carbonyl O atoms tend to form HB with polySER side chain OH groups. We also quantify the hydrophobicity/hydrophilicity of polyALA and polySER by calculating the contact angle of a water droplet pierced by a long polyALA/polySER -helix. Unexpectedly, even when polyALA -helix is supposed to be hydrophobic ( > 90°), we find that ≈ 79°. For polySER, ≈ 70°, consistent with -helical polySER being hydrophilic.

摘要

蛋白质和小肽的稳定性取决于它们与周围水分子相互作用的方式。对于小肽,如α-螺旋聚丙氨酸(聚丙氨酸),水分子会削弱肽主链O和NH基团之间形成的分子内氢键(HB),这些氢键负责α-螺旋结构。在这里,我们进行分子动力学模拟,以研究聚丙氨酸、聚丝氨酸(聚丝氨酸)和其他均聚物肽α-螺旋在不同温度和压力下的水合作用。我们发现,尽管丙氨酸有疏水的CH侧链,但水分子仍与大多数聚丙氨酸羰基O原子形成氢键。在其他具有大侧链的(疏水和亲水)均聚物α-螺旋中也发现了类似的水-肽主链氢键,包括聚缬氨酸、聚亮氨酸和聚苯丙氨酸。在聚丝氨酸(聚丝氨酸)中观察到一种新的水合机制:肽主链很少与水形成氢键,相反,羰基O原子倾向于与聚丝氨酸侧链OH基团形成氢键。我们还通过计算被长聚丙氨酸/聚丝氨酸α-螺旋刺穿的水滴的接触角θ来量化聚丙氨酸和聚丝氨酸的疏水性/亲水性。出乎意料的是,即使聚丙氨酸α-螺旋被认为是疏水的(θ>90°),我们发现θ≈79°。对于聚丝氨酸,θ≈70°,这与α-螺旋聚丝氨酸是亲水的一致。

相似文献

7
Structure of chicken skeletal muscle troponin C at 1.78 A resolution.鸡骨骼肌肌钙蛋白C在1.78埃分辨率下的结构。
Acta Crystallogr D Biol Crystallogr. 1994 Jan 1;50(Pt 1):40-9. doi: 10.1107/S090744499300798X.
10
Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.通过主链氢键的侧链屏蔽实现α-螺旋稳定。
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.

本文引用的文献

1
Learning the relationship between nanoscale chemical patterning and hydrophobicity.学习纳米级化学图案与疏水性之间的关系。
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2200018119. doi: 10.1073/pnas.2200018119. Epub 2022 Nov 21.
8
Temperature Effects on Water-Mediated Interactions at the Nanoscale.温度对纳米尺度下水介导相互作用的影响。
J Phys Chem B. 2018 Sep 27;122(38):8908-8920. doi: 10.1021/acs.jpcb.8b05430. Epub 2018 Sep 17.
9
Water is an active matrix of life for cell and molecular biology.水是细胞和分子生物学的生命活动基质。
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13327-13335. doi: 10.1073/pnas.1703781114. Epub 2017 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验