Suppr超能文献

无金标准情况下的医学成像估计

Estimation in medical imaging without a gold standard.

作者信息

Kupinski Matthew A, Hoppin John W, Clarkson Eric, Barrett Harrison H, Kastis George A

机构信息

Department of Radiology, Arizona Health Sciences Center, Tucson 85724-5067, USA.

出版信息

Acad Radiol. 2002 Mar;9(3):290-7. doi: 10.1016/s1076-6332(03)80372-0.

Abstract

RATIONALE AND OBJECTIVES

In medical imaging, physicians often estimate a parameter of interest (eg, cardiac ejection fraction) for a patient to assist in establishing a diagnosis. Many different estimation methods may exist, but rarely can one be considered a gold standard. Therefore, evaluation and comparison of different estimation methods are difficult. The purpose of this study was to examine a method of evaluating different estimation methods without use of a gold standard.

MATERIALS AND METHODS

This method is equivalent to fitting regression lines without the x axis. To use this method, multiple estimates of the clinical parameter of interest for each patient of a given population were needed. The authors assumed the statistical distribution for the true values of the clinical parameter of interest was a member of a given family of parameterized distributions. Furthermore, they assumed a statistical model relating the clinical parameter to the estimates of its value. Using these assumptions and observed data, they estimated the model parameters and the parameters characterizing the distribution of the clinical parameter.

RESULTS

The authors applied the method to simulated cardiac ejection fraction data with varying numbers of patients, numbers of modalities, and levels of noise. They also tested the method on both linear and nonlinear models and characterized the performance of this method compared to that of conventional regression analysis by using x-axis information. Results indicate that the method follows trends similar to that of conventional regression analysis as patients and noise vary, although conventional regression analysis outperforms the method presented because it uses the gold standard which the authors assume is unavailable.

CONCLUSION

The method accurately estimates model parameters. These estimates can be used to rank the systems for a given estimation task.

摘要

原理与目的

在医学成像中,医生常常为患者估计一个感兴趣的参数(如心脏射血分数)以辅助诊断。可能存在多种不同的估计方法,但很少有一种能被视为金标准。因此,对不同估计方法进行评估和比较很困难。本研究的目的是检验一种在不使用金标准的情况下评估不同估计方法的方法。

材料与方法

该方法等同于在没有x轴的情况下拟合回归线。要使用此方法,需要对给定人群的每个患者的感兴趣临床参数进行多次估计。作者假设感兴趣临床参数的真实值的统计分布是给定参数化分布族的一员。此外,他们假设了一个将临床参数与其值的估计相关联的统计模型。利用这些假设和观测数据,他们估计了模型参数以及表征临床参数分布的参数。

结果

作者将该方法应用于具有不同患者数量、模态数量和噪声水平的模拟心脏射血分数数据。他们还在线性和非线性模型上测试了该方法,并通过使用x轴信息将该方法的性能与传统回归分析的性能进行了比较。结果表明,随着患者数量和噪声的变化,该方法呈现出与传统回归分析相似的趋势,尽管传统回归分析由于使用了作者假设不可用的金标准而表现优于所提出的方法。

结论

该方法能准确估计模型参数。这些估计可用于对给定估计任务的系统进行排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验