Suppr超能文献

定量成像方法的实用无金标准评估框架:在正电子发射断层扫描病变分割中的应用

Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography.

作者信息

Jha Abhinav K, Mena Esther, Caffo Brian, Ashrafinia Saeed, Rahmim Arman, Frey Eric, Subramaniam Rathan M

机构信息

Johns Hopkins University , Department of Radiology and Radiological Sciences, Baltimore, Maryland, United States.

Johns Hopkins University , Department of Biostatistics, Baltimore, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2017 Jan;4(1):011011. doi: 10.1117/1.JMI.4.1.011011. Epub 2017 Mar 3.

Abstract

Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis.

摘要

最近,有人提出了一类无金标准(NGS)技术,用于使用患者数据评估定量成像方法。这些技术提供了品质因数(FoM),无需重复测量且无需金标准即可量化估计的定量值的精度。然而,将这些技术应用于患者数据存在几个实际困难,包括评估潜在假设、考虑与患者采样相关的不确定性以及评估估计的FoM的可靠性。为了解决这些问题,我们提出了统计检验,以提供对潜在假设和估计的FoM的可靠性的信心。此外,NGS技术被集成到基于自助法的方法中,以考虑与患者采样相关的不确定性。所开发的NGS框架被应用于评估从头颈癌患者的F-氟-2-脱氧葡萄糖正电子发射断层扫描图像中分割病变的四种方法,以精确测量代谢肿瘤体积。NGS技术始终将同一种分割方法预测为最精确的方法。即使没有金标准数据,所提出的框架也为这些结果提供了信心。正如预期的那样,基于自助法的方法表明,随着患者研究数量的增加,NGS技术的性能有所提高,并且只要有来自80多个病变的数据可供分析,就会产生一致的结果。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验