Osadebey Michael, Pedersen Marius, Arnold Douglas, Wendel-Mitoraj Katrina
NeuroRx Research Inc., MRI Reader Group, Montreal, Québec, Canada.
Norwegian University of Science and Technology, Department of Computer Science, Gjøvik, Norway.
J Med Imaging (Bellingham). 2017 Apr;4(2):025504. doi: 10.1117/1.JMI.4.2.025504. Epub 2017 Jun 13.
We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer's Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP-noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions.
我们描述了一种用于脑磁共振成像(MRI)图像的基于属性的采集后质量评估方法。它基于将贝叶斯理论应用于熵与图像质量属性之间的关系。将切片的熵特征图像分割为低熵区域和高熵区域。对于每个熵区域,分别有对比度、标准差和锐度质量属性的三个观测值。质量属性的质量指标是在特征图像中观察到质量属性的任何相应区域时,熵区域的后验概率。每个熵区域的先验信念由切片的归一化总团势(TCP)能量确定。对于低于预定义阈值的TCP,区域的先验概率由其在切片中的百分比组成与由阿尔茨海默病神经影像倡议提供的250个MRI体积数据构建的标准正态分布的偏差确定。对于高于阈值的TCP,先验概率使用描述脑MRI图像中TCP与噪声水平关系的数学模型计算。我们提出的方法评估每个熵区域和全局图像的图像质量。实验结果表明,对于不同类型和质量失真水平,与放射科医生的主观意见具有良好的相关性。