Zhang Min, Davidian Marie
Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, USA.
Biometrics. 2008 Jun;64(2):567-76. doi: 10.1111/j.1541-0420.2007.00928.x. Epub 2007 Oct 25.
A general framework for regression analysis of time-to-event data subject to arbitrary patterns of censoring is proposed. The approach is relevant when the analyst is willing to assume that distributions governing model components that are ordinarily left unspecified in popular semiparametric regression models, such as the baseline hazard function in the proportional hazards model, have densities satisfying mild "smoothness" conditions. Densities are approximated by a truncated series expansion that, for fixed degree of truncation, results in a "parametric" representation, which makes likelihood-based inference coupled with adaptive choice of the degree of truncation, and hence flexibility of the model, computationally and conceptually straightforward with data subject to any pattern of censoring. The formulation allows popular models, such as the proportional hazards, proportional odds, and accelerated failure time models, to be placed in a common framework; provides a principled basis for choosing among them; and renders useful extensions of the models straightforward. The utility and performance of the methods are demonstrated via simulations and by application to data from time-to-event studies.
本文提出了一个用于对受任意删失模式影响的事件发生时间数据进行回归分析的通用框架。当分析人员愿意假设控制模型组件的分布(这些分布在流行的半参数回归模型中通常未明确指定,例如比例风险模型中的基线风险函数)具有满足适度“平滑性”条件的密度时,该方法是适用的。密度通过截断级数展开进行近似,对于固定的截断程度,会得到一个“参数化”表示,这使得基于似然的推断与截断程度的自适应选择相结合,从而使模型具有灵活性,对于受任何删失模式影响的数据,在计算和概念上都很直接。该公式允许将流行的模型,如比例风险模型、比例优势模型和加速失效时间模型,置于一个通用框架中;为在这些模型之间进行选择提供了一个有原则的基础;并使模型的有用扩展变得直接明了。通过模拟以及将其应用于事件发生时间研究的数据,展示了这些方法的实用性和性能。