Suppr超能文献

针对任意删失的事件发生时间数据的“平滑”半参数回归分析。

"Smooth" semiparametric regression analysis for arbitrarily censored time-to-event data.

作者信息

Zhang Min, Davidian Marie

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, USA.

出版信息

Biometrics. 2008 Jun;64(2):567-76. doi: 10.1111/j.1541-0420.2007.00928.x. Epub 2007 Oct 25.

Abstract

A general framework for regression analysis of time-to-event data subject to arbitrary patterns of censoring is proposed. The approach is relevant when the analyst is willing to assume that distributions governing model components that are ordinarily left unspecified in popular semiparametric regression models, such as the baseline hazard function in the proportional hazards model, have densities satisfying mild "smoothness" conditions. Densities are approximated by a truncated series expansion that, for fixed degree of truncation, results in a "parametric" representation, which makes likelihood-based inference coupled with adaptive choice of the degree of truncation, and hence flexibility of the model, computationally and conceptually straightforward with data subject to any pattern of censoring. The formulation allows popular models, such as the proportional hazards, proportional odds, and accelerated failure time models, to be placed in a common framework; provides a principled basis for choosing among them; and renders useful extensions of the models straightforward. The utility and performance of the methods are demonstrated via simulations and by application to data from time-to-event studies.

摘要

本文提出了一个用于对受任意删失模式影响的事件发生时间数据进行回归分析的通用框架。当分析人员愿意假设控制模型组件的分布(这些分布在流行的半参数回归模型中通常未明确指定,例如比例风险模型中的基线风险函数)具有满足适度“平滑性”条件的密度时,该方法是适用的。密度通过截断级数展开进行近似,对于固定的截断程度,会得到一个“参数化”表示,这使得基于似然的推断与截断程度的自适应选择相结合,从而使模型具有灵活性,对于受任何删失模式影响的数据,在计算和概念上都很直接。该公式允许将流行的模型,如比例风险模型、比例优势模型和加速失效时间模型,置于一个通用框架中;为在这些模型之间进行选择提供了一个有原则的基础;并使模型的有用扩展变得直接明了。通过模拟以及将其应用于事件发生时间研究的数据,展示了这些方法的实用性和性能。

相似文献

1
"Smooth" semiparametric regression analysis for arbitrarily censored time-to-event data.
Biometrics. 2008 Jun;64(2):567-76. doi: 10.1111/j.1541-0420.2007.00928.x. Epub 2007 Oct 25.
2
Semiparametric analysis of survival data with left truncation and dependent right censoring.
Biometrics. 2005 Jun;61(2):567-75. doi: 10.1111/j.1541-0420.2005.00335.x.
3
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
4
'Smooth' inference for survival functions with arbitrarily censored data.
Stat Med. 2008 Nov 20;27(26):5421-39. doi: 10.1002/sim.3368.
5
Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring.
Biometrics. 2010 Mar;66(1):39-49. doi: 10.1111/j.1541-0420.2009.01266.x. Epub 2009 May 12.
6
Semiparametric inference for surrogate endpoints with bivariate censored data.
Biometrics. 2008 Mar;64(1):149-56. doi: 10.1111/j.1541-0420.2007.00834.x. Epub 2007 Jul 25.
9
Semiparametric regression analysis of length-biased interval-censored data.
Biometrics. 2019 Mar;75(1):121-132. doi: 10.1111/biom.12970. Epub 2019 Mar 8.

引用本文的文献

1
Estimation of accelerated hazards models based on case informatively interval-censored failure time data.
J Appl Stat. 2023 Apr 5;51(7):1251-1270. doi: 10.1080/02664763.2023.2196752. eCollection 2024.
3
A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors.
Biostatistics. 2023 Jul 14;24(3):811-831. doi: 10.1093/biostatistics/kxac009.
4
Smooth semi-nonparametric (SNP) estimation of the cumulative incidence function.
Stat Med. 2017 Aug 15;36(18):2921-2934. doi: 10.1002/sim.7331. Epub 2017 May 23.
7
8
Inverse probability weighting for covariate adjustment in randomized studies.
Stat Med. 2014 Feb 20;33(4):555-68. doi: 10.1002/sim.5969. Epub 2013 Sep 9.
9
Estimating Regression Parameters in an Extended Proportional Odds Model.
J Am Stat Assoc. 2012 Mar 1;107(497):318-330. doi: 10.1080/01621459.2012.656021. Epub 2012 Jan 31.
10
Predictive comparison of joint longitudinal-survival modeling: a case study illustrating competing approaches.
Lifetime Data Anal. 2011 Jan;17(1):3-28. doi: 10.1007/s10985-010-9162-0. Epub 2010 Apr 6.

本文引用的文献

1
Smoothing spline-based score tests for proportional hazards models.
Biometrics. 2006 Sep;62(3):803-12. doi: 10.1111/j.1541-0420.2005.00521.x.
2
Hazard regression for interval-censored data with penalized spline.
Biometrics. 2003 Sep;59(3):570-9. doi: 10.1111/1541-0420.00067.
3
Estimation in the cox proportional hazards model with left-truncated and interval-censored data.
Biometrics. 2002 Mar;58(1):64-70. doi: 10.1111/j.0006-341x.2002.00064.x.
4
A local likelihood proportional hazards model for interval censored data.
Stat Med. 2002 Jan 30;21(2):263-75. doi: 10.1002/sim.993.
5
Linear mixed models with flexible distributions of random effects for longitudinal data.
Biometrics. 2001 Sep;57(3):795-802. doi: 10.1111/j.0006-341x.2001.00795.x.
6
Semiparametric regression analysis of interval-censored data.
Biometrics. 2000 Dec;56(4):1139-44. doi: 10.1111/j.0006-341x.2000.01139.x.
7
Estimation of regression parameters and the hazard function in transformed linear survival models.
Biometrics. 2000 Jun;56(2):571-6. doi: 10.1111/j.0006-341x.2000.00571.x.
8
Bayesian information criterion for censored survival models.
Biometrics. 2000 Mar;56(1):256-62. doi: 10.1111/j.0006-341x.2000.00256.x.
9
A multiple imputation approach to Cox regression with interval-censored data.
Biometrics. 2000 Mar;56(1):199-203. doi: 10.1111/j.0006-341x.2000.00199.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验