Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, MD 20892, USA.
Stat Methods Med Res. 2011 Jun;20(3):261-74. doi: 10.1177/0962280209347046. Epub 2010 Feb 24.
Cancer patients are subject to multiple competing risks of death and may die from causes other than the cancer diagnosed. The probability of not dying from the cancer diagnosed, which is one of the patients' main concerns, is sometimes called the 'personal cure' rate. Two approaches of modelling competing-risk survival data, namely the cause-specific hazards approach and the mixture model approach, have been used to model competing-risk survival data. In this article, we first show the connection and differences between crude cause-specific survival in the presence of other causes and net survival in the absence of other causes. The mixture survival model is extended to population-based grouped survival data to estimate the personal cure rate. Using the colorectal cancer survival data from the Surveillance, Epidemiology and End Results Programme, we estimate the probabilities of dying from colorectal cancer, heart disease, and other causes by age at diagnosis, race and American Joint Committee on Cancer stage.
癌症患者面临多种死亡的竞争风险,并且可能死于诊断出的癌症以外的其他原因。被诊断出的癌症导致的死亡概率,这是患者主要关心的问题之一,有时被称为“个人治愈”率。两种建模竞争风险生存数据的方法,即基于原因的风险模型和混合模型方法,已被用于建模竞争风险生存数据。在本文中,我们首先展示了在存在其他原因时的粗原因特异性生存和不存在其他原因时的净生存之间的联系和差异。混合生存模型扩展到基于人群的分组生存数据,以估计个人治愈率。我们使用来自监测、流行病学和最终结果计划的结直肠癌生存数据,按诊断时的年龄、种族和美国癌症联合委员会分期估计死于结直肠癌、心脏病和其他原因的概率。