Suppr超能文献

野生型和工程化的布氏锥虫单体磷酸丙糖异构酶:D2O 中反应中间产物的分配和亚磷酸二阴离子的激活。

Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion.

机构信息

Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-3000, USA.

出版信息

Biochemistry. 2011 Jun 28;50(25):5767-79. doi: 10.1021/bi2005416. Epub 2011 Jun 6.

Abstract

Product yields for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D2O at pD 7.9 catalyzed by wildtype triosephosphate isomerase from Trypanosoma brucei brucei (Tbb TIM) and a monomeric variant (monoTIM) of this wildtype enzyme were determined by (1)H NMR spectroscopy and were compared with the yields determined in earlier work for the reactions catalyzed by TIM from rabbit and chicken muscle [O'Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005), Biochemistry 44, 2610 - 2621]. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen, d-DHAP from isomerization with incorporation of deuterium from D2O into C-1 of DHAP, and d-GAP from incorporation of deuterium from D2O into C-2 of GAP. The yield of DHAP formed by intramolecular transfer of hydrogen decreases from 49% for the muscle enzymes to 40% for wildtype Tbb TIM to 34% for monoTIM. There is no significant difference in the ratio of the yields of d-DHAP and d-GAP for wildtype TIM from muscle sources and Trypanosoma brucei brucei, but partitioning of the enediolate intermediate of the monoTIM reaction to form d-DHAP is less favorable ((k(C1))(D)/(k(C2))(D) = 1.1) than for the wildtype enzyme ((k(C1))(D)/(k(C2))(D) = 1.7). Product yields for the wildtype Tbb TIM and monoTIM-catalyzed reactions of glycolaldehyde labeled with carbon-13 at the carbonyl carbon ([1-(13)C]-GA) at pD 7.0 in the presence of phosphite dianion and in its absence were determined by (1)H NMR spectroscopy [Go, M. K., Amyes, T. L., and Richard, J. P. (2009) Biochemistry 48, 5769-5778]. There is no detectable difference in the yields of the products of wildtype muscle and Tbb TIM-catalyzed reactions of [1-(13)C]-GA in D2O. The kinetic parameters for phosphite dianion activation of the reactions of [1-(13)C]-GA catalyzed by wildtype Tbb TIM are similar to those reported for the enzyme from rabbit muscle [Amyes, T. L. and Richard, J. P. (2007) Biochemistry 46, 5841-5854], but there is no detectable dianion activation of the reaction catalyzed by monoTIM. The engineered disruption of subunit contacts at monoTIM causes movement of the essential side chains of Lys-13 and His-95 away from the catalytic active positions. We suggest that this places an increased demand that the intrinsic binding energy of phosphite dianion be utilized to drive the change in the conformation of monoTIM back to the active structure for wildtype TIM.

摘要

(R)-甘油醛 3-磷酸(GAP)在 pD 7.9 下的反应产物,由布氏锥虫(Tbb TIM)野生型磷酸丙糖异构酶和该野生型酶的单体变体(monoTIM)催化,通过(1)H NMR 光谱法测定,并与先前报道的兔和鸡肌肉 TIM 催化反应的产物进行比较[O'Donoghue,A.C.,Amyes,T.L.,Richard,J.P.(2005),生物化学 44,2610-2621]。从 TIM 催化的反应中观察到三种产物:通过分子内氢转移的二羟丙酮磷酸(DHAP),通过掺入 D2O 中的氘原子到 DHAP 的 C-1 的 d-DHAP,以及通过掺入 D2O 中的氘原子到 GAP 的 C-2 的 d-GAP。通过分子内氢转移形成的 DHAP 的产率从肌肉酶的 49%降至野生型 Tbb TIM 的 40%,降至单体 TIM 的 34%。肌肉来源的野生型 TIM 和布氏锥虫(Trypanosoma brucei brucei)的 d-DHAP 和 d-GAP 产率比值没有显著差异,但单体 TIM 反应的烯醇化物中间体形成 d-DHAP 的分配不利于形成 d-DHAP((k(C1))(D)/(k(C2))(D)=1.1)比野生型酶((k(C1))(D)/(k(C2))(D)=1.7)。通过(1)H NMR 光谱法测定了羰基碳上标记有碳-13 的[1-(13)C]-GA 在 pD 7.0 下的野生型 Tbb TIM 和单体 TIM 催化反应的产物产率[Go,M.K.,Amyes,T.L.,Richard,J.P.(2009)生物化学 48,5769-5778]。在 D2O 中,[1-(13)C]-GA 的野生型肌肉和 Tbb TIM 催化反应产物的产率没有差异。[1-(13)C]-GA 催化反应的磷酰二阴离子激活的动力学参数与兔肌肉酶报道的相似[Amyes,T.L.和 Richard,J.P.(2007)生物化学 46,5841-5854],但单体 TIM 催化的反应没有检测到磷酰二阴离子的激活。单体 TIM 中亚基接触的工程破坏导致必需侧链 Lys-13 和 His-95 远离催化活性位置移动。我们认为,这对磷酸二阴离子的固有结合能的利用提出了更高的要求,以促使单体 TIM 的构象变化恢复为野生型 TIM 的活性结构。

相似文献

2
Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
J Am Chem Soc. 2012 Jun 20;134(24):10286-98. doi: 10.1021/ja303695u. Epub 2012 Jun 6.
6
Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
Biochemistry. 2007 May 15;46(19):5841-54. doi: 10.1021/bi700409b. Epub 2007 Apr 20.
8
Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a ligand-driven conformational change.
J Am Chem Soc. 2011 Oct 19;133(41):16428-31. doi: 10.1021/ja208019p. Epub 2011 Sep 28.
10
Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2015 Dec 9;137(48):15185-97. doi: 10.1021/jacs.5b09328. Epub 2015 Nov 30.

引用本文的文献

1
Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site.
Biochemistry. 2023 Oct 17;62(20):2916-2927. doi: 10.1021/acs.biochem.3c00414. Epub 2023 Sep 28.
2
The Role of Asn11 in Catalysis by Triosephosphate Isomerase.
Biochemistry. 2023 Jun 6;62(11):1794-1806. doi: 10.1021/acs.biochem.3c00133. Epub 2023 May 10.
3
The role of ligand-gated conformational changes in enzyme catalysis.
Biochem Soc Trans. 2019 Oct 31;47(5):1449-1460. doi: 10.1042/BST20190298.
6
A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.
Org Biomol Chem. 2017 Oct 31;15(42):8856-8866. doi: 10.1039/c7ob01652b.
7
Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2017 Aug 2;139(30):10514-10525. doi: 10.1021/jacs.7b05576. Epub 2017 Jul 19.
8
Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis.
PLoS One. 2016 Dec 9;11(12):e0168074. doi: 10.1371/journal.pone.0168074. eCollection 2016.
9
Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.
Biochemistry. 2016 May 31;55(21):3036-47. doi: 10.1021/acs.biochem.6b00311. Epub 2016 May 17.
10
Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2015 Dec 9;137(48):15185-97. doi: 10.1021/jacs.5b09328. Epub 2015 Nov 30.

本文引用的文献

1
A role for flexible loops in enzyme catalysis.
Curr Opin Struct Biol. 2010 Dec;20(6):702-10. doi: 10.1016/j.sbi.2010.09.005. Epub 2010 Oct 13.
2
Rescue of K12G triosephosphate isomerase by ammonium cations: the reaction of an enzyme in pieces.
J Am Chem Soc. 2010 Sep 29;132(38):13525-32. doi: 10.1021/ja106104h.
3
Triosephosphate isomerase: a highly evolved biocatalyst.
Cell Mol Life Sci. 2010 Dec;67(23):3961-82. doi: 10.1007/s00018-010-0473-9. Epub 2010 Aug 7.
4
Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase.
Acta Crystallogr D Biol Crystallogr. 2010 Aug;66(Pt 8):934-44. doi: 10.1107/S0907444910025710. Epub 2010 Jul 14.
6
Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach.
Biochemistry. 2010 Jun 29;49(25):5377-89. doi: 10.1021/bi100538b.
9
Phosphate binding energy and catalysis by small and large molecules.
Acc Chem Res. 2008 Apr;41(4):539-48. doi: 10.1021/ar7002013. Epub 2008 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验