Simonson Anne B, Lake James A
Molecular Biology Institute, University of California, Los Angeles 90095, USA.
Nature. 2002 Mar 21;416(6878):281-5. doi: 10.1038/416281a.
During decoding, a codon of messenger RNA is matched with its cognate aminoacyl-transfer RNA and the amino acid carried by the tRNA is added to the growing protein chain. Here we propose a molecular mechanism for the decoding phase of translation: the transorientation hypothesis. The model incorporates a newly identified tRNA binding site and utilizes a flip between two tRNA anticodon loop structures, the 5'-stacked and the 3'-stacked conformations. The anticodon loop acts as a three-dimensional hinge permitting rotation of the tRNA about a relatively fixed codon-anticodon pair. This rotation, driven by a conformational change in elongation factor Tu involving GTP hydrolysis, transorients the incoming tRNA into the A site from the D site of initial binding and decoding, where it can be proofread and accommodated. The proposed mechanisms are compatible with the known structures, conformations and functions of the ribosome and its component parts including tRNAs and EF-Tu, in both the GTP and GDP states.
在解码过程中,信使核糖核酸的密码子与它对应的氨酰转运核糖核酸相匹配,并且转运核糖核酸携带的氨基酸被添加到正在生长的蛋白质链中。在此,我们提出一种翻译解码阶段的分子机制:转位取向假说。该模型纳入了一个新发现的转运核糖核酸结合位点,并利用了转运核糖核酸反密码子环的两种结构(5'-堆积构象和3'-堆积构象)之间的翻转。反密码子环充当一个三维铰链,允许转运核糖核酸围绕相对固定的密码子-反密码子对旋转。这种旋转由延伸因子Tu中涉及鸟苷三磷酸水解的构象变化驱动,将进入的转运核糖核酸从初始结合和解码的D位点转位到A位点,在那里它可以被校对并容纳。所提出的机制与核糖体及其组成部分(包括转运核糖核酸和延伸因子Tu)在鸟苷三磷酸和二磷酸鸟苷状态下已知的结构、构象和功能是兼容的。