Schmitz Jürgen, Ohme Martina, Zischler Hans
Primate Genetics, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
Mol Biol Evol. 2002 Apr;19(4):544-53. doi: 10.1093/oxfordjournals.molbev.a004110.
Inconsistencies between phylogenetic interpretations obtained from independent sources of molecular data occasionally hamper the recovery of the true evolutionary history of certain taxa. One prominent example concerns the primate infraordinal relationships. Phylogenetic analyses based on nuclear DNA sequences traditionally represent Tarsius as a sister group to anthropoids. In contrast, mitochondrial DNA (mtDNA) data only marginally support this affiliation or even exclude Tarsius from primates. Two possible scenarios might cause this conflict: a period of adaptive molecular evolution or a shift in the nucleotide composition of higher primate mtDNAs through directional mutation pressure. To test these options, the entire mt genome of Tarsius bancanus was sequenced and compared with mtDNA of representatives of all major primate groups and mammals. Phylogenetic reconstructions at both the amino acid (AA) and DNA level of the protein-coding genes led to faulty tree topologies depending on the algorithms used for reconstruction. We propose that these artifactual affiliations rather reflect the nucleotide compositional similarity than phylogenetic relatedness and favor the directional mutation pressure hypothesis because: (1) the overall nucleotide composition changes dramatically on the lineage leading to higher primates at both silent and nonsilent sites, and (2) a highly significant correlation exists between codon usage and the nucleotide composition at the third, silent codon position. Comparisons of mt genes with mt pseudogenes that presumably transferred to the nucleus before the directional mutation pressure took place indicate that the ancestral DNA composition is retained in the relatively fossilized mtDNA-like sequences, and that the directed acceleration of the substitution rate in higher primates is restricted to mtDNA.
从独立的分子数据来源获得的系统发育解释之间的不一致,偶尔会阻碍某些分类群真实进化历史的还原。一个突出的例子涉及灵长目下目之间的关系。基于核DNA序列的系统发育分析传统上把跗猴作为类人猿的姐妹群。相比之下,线粒体DNA(mtDNA)数据仅略微支持这种关联,甚至将跗猴排除在灵长目之外。两种可能的情况可能导致这种冲突:一段适应性分子进化时期,或者高等灵长类mtDNA的核苷酸组成因定向突变压力而发生变化。为了检验这些选项,对棉顶狨的整个线粒体基因组进行了测序,并与所有主要灵长类群和哺乳动物的代表的mtDNA进行了比较。根据用于重建的算法,在蛋白质编码基因的氨基酸(AA)和DNA水平上进行的系统发育重建导致了错误的树形拓扑结构。我们认为,这些人为的关联更多地反映了核苷酸组成的相似性,而不是系统发育相关性,并支持定向突变压力假说,因为:(1)在导致高等灵长类的谱系上,无论是沉默位点还是非沉默位点,整体核苷酸组成都发生了巨大变化;(2)密码子使用与第三个沉默密码子位置的核苷酸组成之间存在高度显著的相关性。将mt基因与可能在定向突变压力发生之前转移到细胞核的mt假基因进行比较表明,祖先的DNA组成保留在相对化石化的类mtDNA序列中,并且高等灵长类中替换率的定向加速仅限于mtDNA。