Suppr超能文献

全基因组表达振荡。对酵母表达阵列的时间序列数据进行小波分析,揭示了表型的动态结构。

Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype.

作者信息

Klevecz R R, Murray D B

机构信息

Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.

出版信息

Mol Biol Rep. 2001;28(2):73-82. doi: 10.1023/a:1017909012215.

Abstract

A reanalysis of expression arrays in yeast cells synchronized by alpha factor blockade or through the use of temperature sensitive mutants uncovered a genome wide pattern of oscillations in mRNA concentrations. Using wavelet decomposition as a signal processing technique and enhancement strategies borrowed from image processing, noise and trends in the Stanford yeast cell cycle data were partitioned away from time series profiles to uncover genome-wide oscillations in expression. These oscillations which were typically of cell cycle or half cell cycle duration, 40 and 80 minutes in the Stanford data set suggest that there are large-scale temporal structures and high frequency oscillations in mRNA levels through the cell cycle. Wavelet decomposition, which acts like a band pass filter bank, was used to determine where most of the power appeared in the decomposition. The approximately 40-min oscillation is mirrored in continuous chemostat cultures. In these cultures, metabolic synchrony involving an unknown proportion of the transcriptome can be monitored by measurement of oxygen consumption and can be sustained for weeks. These 40-min oscillations are stable and precise with coefficients of variation less than 1% for both period and amplitude. The hypothesis that high and low amplitude oscillations are a ubiquitous property of the genetic regulatory circuitry was supported by the observation of period doubling bifurcations in the distribution of population doubling times in yeast.

摘要

对通过α因子阻断或使用温度敏感突变体同步化的酵母细胞中的表达阵列进行重新分析,发现了mRNA浓度全基因组范围的振荡模式。使用小波分解作为信号处理技术,并借鉴图像处理中的增强策略,将斯坦福酵母细胞周期数据中的噪声和趋势从时间序列轮廓中分离出来,以揭示全基因组范围的表达振荡。这些振荡通常具有细胞周期或半细胞周期的持续时间,在斯坦福数据集中为40分钟和80分钟,这表明在整个细胞周期中mRNA水平存在大规模的时间结构和高频振荡。小波分解的作用类似于带通滤波器组,用于确定分解中大部分能量出现的位置。大约40分钟的振荡在连续恒化器培养中得到反映。在这些培养物中,可以通过测量耗氧量来监测涉及未知比例转录组的代谢同步性,并且可以持续数周。这些40分钟的振荡稳定且精确,周期和幅度的变异系数均小于1%。酵母群体倍增时间分布中出现的周期加倍分岔现象支持了高振幅和低振幅振荡是遗传调控电路普遍特性的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验