Murray D B, Engelen F A, Keulers M, Kuriyama H, Lloyd D
Biochemical Engineering Laboratory, National Institute of Biosciences and Human Technology, Tsukuba, Ibaraki, Japan.
FEBS Lett. 1998 Jul 17;431(2):297-9. doi: 10.1016/s0014-5793(98)00777-7.
A continuous culture of Saccharomyces cerevisiae strain IFO 0233 growing aerobically at pH 3.4 shows persistent high-amplitude respiratory oscillations with a period of about 45 min. These robust autonomous cycles are accompanied by changes of product accumulation (acetaldehyde and acetic acid), intracellular pH, and intracellular redox state, as indicated by continuously monitored NADH fluorescence and the glutathione content of cell-free extracts. Perturbation of the oscillation of dissolved O2 was produced on addition of 100 microM glutathione, > 10 nM Na nitroprusside, 8 microM NaNO2, or 10 microM S-nitrosoglutathione. NO gas, putative NO.-releasing agents, or an inhibitor of NO synthase were ineffective. We suggest that nitrosation by NO+ of a component of a redox switch can account for these data, and we emphasise the different modes of action of the different redox forms of nitrogen monoxide.
酿酒酵母IFO 0233菌株在pH 3.4条件下好氧生长的连续培养显示出持续的高振幅呼吸振荡,周期约为45分钟。这些稳健的自主循环伴随着产物积累(乙醛和乙酸)、细胞内pH值和细胞内氧化还原状态的变化,如通过连续监测NADH荧光和无细胞提取物中的谷胱甘肽含量所示。添加100微摩尔谷胱甘肽、>10纳摩尔硝普钠、8微摩尔亚硝酸钠或10微摩尔S-亚硝基谷胱甘肽会导致溶解氧振荡受到扰动。一氧化氮气体、假定的一氧化氮释放剂或一氧化氮合酶抑制剂无效。我们认为,一氧化氮对氧化还原开关组件的亚硝化作用可以解释这些数据,并且我们强调了一氧化氮不同氧化还原形式的不同作用模式。