Suppr超能文献

酵母中的渗透适应——酵母渗透溶质系统的调控

Osmotic adaptation in yeast--control of the yeast osmolyte system.

作者信息

Hohmann Stefan

机构信息

Department of Cell and Molecular Biology, Göteborg University, Sweden.

出版信息

Int Rev Cytol. 2002;215:149-87. doi: 10.1016/s0074-7696(02)15008-x.

Abstract

The yeast Saccharomyces cerevisiae (baker's yeast or budding yeast) is an excellent eukaryotic model system for cellular biology with a well-explored, completely sequenced genome. Yeast cells possess robust systems for osmotic adaptation. Central to the response to high osmolarity is the HOG pathway, one of the best-explored MAP kinase pathways. This pathway controls via different transcription factors the expression of more than 150 genes. In addition, osmotic responses are also controlled by protein kinase A via a general stress response pathway and by presently unknown signaling systems. The HOG pathway partially controls expression of genes encoding enzymes in glycerol production. Glycerol is the main yeast osmolyte, and its production is essential for growth in a high osmolarity medium. Upon hypo-osmotic shock, yeast cells transiently stimulate another MAP kinase pathway, the so-called PKC pathway, which appears to orchestrate the assembly of the cell surface and the cell wall. In addition, yeast cells show signs of a regulated volume decrease by rapidly exporting glycerol through Fps1p. This unusual MIP channel is gated by osmotic changes and thereby plays a key role in controlling the intracellular osmolyte content. Yeast cells also possess two aquaporins, Aqy1p and Aqy2p. The production of both proteins is strictly regulated, suggesting that these water channels play very specific roles in yeast physiology. Aqy1p appears to be developmentally regulated. Given the strong yeast research community and the excellent tools of genetics and functional genomics available, we expect yeast to be the best-explored cellular organism for several years ahead, and osmotic responses are a focus of interest for numerous yeast researchers.

摘要

酿酒酵母(面包酵母或出芽酵母)是细胞生物学中一个出色的真核生物模型系统,其基因组已得到充分研究且完全测序。酵母细胞拥有强大的渗透适应系统。对高渗透压响应的核心是高渗甘油(HOG)途径,这是研究得最为透彻的丝裂原活化蛋白激酶(MAP)途径之一。该途径通过不同的转录因子控制150多个基因的表达。此外,渗透反应还通过一般应激反应途径由蛋白激酶A以及目前未知的信号系统控制。HOG途径部分控制甘油生产中编码酶的基因的表达。甘油是酵母的主要渗透溶质,其产生对于在高渗培养基中生长至关重要。在低渗休克时,酵母细胞会短暂刺激另一条MAP激酶途径,即所谓的蛋白激酶C(PKC)途径,该途径似乎协调细胞表面和细胞壁的组装。此外,酵母细胞通过Fps1p快速输出甘油,显示出调节体积减小的迹象。这种独特的主要内在蛋白(MIP)通道由渗透压变化门控,因此在控制细胞内渗透溶质含量方面起着关键作用。酵母细胞还拥有两种水通道蛋白,Aqy1p和Aqy2p。这两种蛋白质的产生都受到严格调控,表明这些水通道在酵母生理学中发挥着非常特定的作用。Aqy1p似乎受发育调控。鉴于强大的酵母研究群体以及现有的出色遗传学和功能基因组学工具,我们预计在未来几年酵母仍将是研究最为深入的细胞生物体,而渗透反应是众多酵母研究人员感兴趣的焦点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验