Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
FEMS Yeast Res. 2022 Aug 30;22(1). doi: 10.1093/femsyr/foac035.
In response to osmotic dehydration cells sense, signal, alter gene expression, and metabolically counterbalance osmotic differences. The main compatible solute/osmolyte that accumulates in yeast cells is glycerol, which is produced from the glycolytic intermediate dihydroxyacetone phosphate. This review covers recent advancements in understanding mechanisms involved in sensing, signaling, cell-cycle delays, transcriptional responses as well as post-translational modifications on key proteins in osmoregulation. The protein kinase Hog1 is a key-player in many of these events, however, there is also a growing body of evidence for important Hog1-independent mechanisms playing vital roles. Several missing links in our understanding of osmoregulation will be discussed and future avenues for research proposed. The review highlights that this rather simple experimental system-salt/sorbitol and yeast-has developed into an enormously potent model system unravelling important fundamental aspects in biology.
为了应对渗透脱水,细胞会感知、发出信号、改变基因表达,并在代谢上平衡渗透差异。在酵母细胞中积累的主要相容溶质/渗透物是甘油,它是由糖酵解中间产物二羟丙酮磷酸产生的。这篇综述涵盖了在理解渗透调节中涉及的感应、信号转导、细胞周期延迟、转录反应以及关键蛋白的翻译后修饰等方面的最新进展。蛋白激酶 Hog1 是这些事件中的关键参与者,然而,也有越来越多的证据表明,重要的 Hog1 独立机制起着至关重要的作用。我们将讨论对渗透调节理解中的一些缺失环节,并提出未来的研究方向。综述强调,这个相当简单的实验系统——盐/山梨醇和酵母——已经发展成为一个非常强大的模型系统,揭示了生物学中重要的基本方面。