de Azevedo Wäsch Susana I, van der Ploeg Jan R, Maire Tere, Lebreton Alice, Kiener Andreas, Leisinger Thomas
Institute of Microbiology, ETH Zentrum, LFV, CH-8092 Zürich, Switzerland.
Appl Environ Microbiol. 2002 May;68(5):2368-75. doi: 10.1128/AEM.68.5.2368-2375.2002.
Pseudomonas sp. strain KIE171 was able to grow with isopropylamine or L-alaninol [S-(+)-2-amino-1-propanol] as the sole carbon source, but not with D-alaninol. To investigate the hypothesis that L-alaninol is an intermediate in the degradation of isopropylamine, two mini-Tn5 mutants unable to utilize both isopropylamine and L-alaninol were isolated. Whereas mutant KIE171-BI transformed isopropylamine to L-alaninol, mutant KIE171-BII failed to do so. The two genes containing a transposon insertion were cloned, and the DNA regions flanking the insertions were sequenced. Two clusters, one comprising eight ipu (isopropylamine utilization) genes (ipuABCDEFGH) and the other encompassing two genes (ipuI and orf259), were identified. Comparisons of sequences of the deduced Ipu proteins and those in the database suggested that isopropylamine is transported into the cytoplasm by a putative permease, IpuG. The next step, the formation of gamma-glutamyl-isopropylamide from isopropylamine, ATP, and L-glutamate, was shown to be catalyzed by IpuC, a gamma-glutamylamide synthetase. gamma-Glutamyl-isopropylamide is then subjected to stereospecific monooxygenation by the hypothetical four-component system IpuABDE, thereby yielding gamma-glutamyl-L-alaninol [gamma(L-glutamyl)-L-hydroxy-isopropylamide]. Enzymatic hydrolysis by a hydrolase, IpuF, was shown to finally liberate L-alaninol and to regenerate L-glutamate. No gene(s) encoding an enzyme for the next step in the degradation of isopropylamine was found in the ipu clusters. Presumably, L-alaninol is oxidized by an alcohol dehydrogenase to yield L-2-aminopropionaldehyde or it is deaminated by an ammonia lyase to propionaldehyde. Genetic evidence indicated that the aldehyde formed is then further oxidized by the hypothetical aldehyde dehydrogenases IpuI and IpuH to either L-alanine or propionic acid, compounds which can be processed by reactions of the intermediary metabolism.
假单胞菌属菌株KIE171能够以异丙胺或L-丙氨醇[S-(+)-2-氨基-1-丙醇]作为唯一碳源生长,但不能利用D-丙氨醇。为了研究L-丙氨醇是异丙胺降解过程中的中间产物这一假说,分离出了两个无法利用异丙胺和L-丙氨醇的mini-Tn5突变体。突变体KIE171-BI能将异丙胺转化为L-丙氨醇,而突变体KIE171-BII则不能。克隆了含有转座子插入的两个基因,并对插入位点两侧的DNA区域进行了测序。鉴定出两个基因簇,一个包含八个ipu(异丙胺利用)基因(ipuABCDEFGH),另一个包含两个基因(ipuI和orf259)。推导的Ipu蛋白序列与数据库中的序列比较表明,异丙胺由一种假定的通透酶IpuG转运到细胞质中。下一步,由异丙胺、ATP和L-谷氨酸形成γ-谷氨酰-异丙酰胺,这一反应由γ-谷氨酰胺合成酶IpuC催化。然后,γ-谷氨酰-异丙酰胺由假定的四组分系统IpuABDE进行立体特异性单加氧反应,从而生成γ-谷氨酰-L-丙氨醇[γ(L-谷氨酰)-L-羟基-异丙酰胺]。一种水解酶IpuF的酶促水解最终释放出L-丙氨醇并再生L-谷氨酸。在ipu基因簇中未发现编码异丙胺降解下一步反应酶的基因。推测L-丙氨醇被醇脱氢酶氧化生成L-2-氨基丙醛,或者被氨裂合酶脱氨生成丙醛。遗传证据表明,生成的醛随后被假定醛脱氢酶IpuI和IpuH进一步氧化为L-丙氨酸或丙酸,这些化合物可通过中间代谢反应进行处理。