Schweitzer Dirk, Shearer Jason, Rittenberg Durrell K, Shoner Steven C, Ellison Jeffrey J, Loloee Reza, Lovell Scott, Barnhart David, Kovacs Julie A
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
Inorg Chem. 2002 Jun 17;41(12):3128-36. doi: 10.1021/ic0109187.
To examine how small structural changes influence the reactivity and magnetic properties of biologically relevant metal complexes, the reactivity and magnetic properties of two structurally related five-coordinate Fe(III) thiolate compounds are compared. (Et,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))]PF(6) (3) is synthesized via the abstraction of a sulfur from alkyl persulfide ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))-S(pers)]PF(6) (2) using PEt(3). (Et,Pr)-3 is structurally related to (Pr,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))]PF(6) (1), a nitrile hydratase model compound previously reported by our group, except it contains one fewer methylene unit in its ligand backbone. Removal of this methylene distorts the geometry, opens a S-Fe-N angle by approximately 10 degrees, alters the magnetic properties by stabilizing the S = 1/2 state relative to the S = 3/2 state, and increases reactivity. Reactivity differences between 3 and 1 were assessed by comparing the thermodynamics and kinetics of azide binding. Azide binds reversibly to both (Et,Pr)-3 and (Pr,Pr)-1 in MeOH solutions. The ambient temperature K(eq) describing the equilibrium between five-coordinate 1 or 3 and azide-bound 1-N(3) or 3-N(3) in MeOH is approximately 10 times larger for the (Et,Pr) system. In CH(2)Cl(2), azide binds approximately 3 times faster to 3 relative to 1, and in MeOH, azide dissociates 1 order of magnitude slower from 3-N(3) relative to 1-N(3). The increased on rates are most likely a consequence of the decreased structural rearrangement required to convert 3 to an approximately octahedral structure, or they reflect differences in the LUMO (vs SOMO) orbital population (i.e., spin-state differences). Dissociation rates from both 3-N(3) and 1-N(3) are much faster than one would expect for low-spin Fe(III). Most likely this is due to the labilizing effect of the thiolate sulfur that is trans to azide in these structures.
为了研究微小的结构变化如何影响生物相关金属配合物的反应活性和磁性,我们比较了两种结构相关的五配位铁(III)硫醇盐化合物的反应活性和磁性。通过使用三乙膦从烷基过硫化物连接的[Fe(III)(S(2)(Me2)N(3)(Et,Pr))-S(pers)]PF(6)(2)中夺取一个硫原子,合成了(Et,Pr)连接的[Fe(III)(S(2)(Me2)N(3)(Et,Pr))]PF(6)(3)。(Et,Pr)-3在结构上与(Pr,Pr)连接的[Fe(III)(S(2)(Me2)N(3)(Pr,Pr))]PF(6)(1)相关,(1)是我们小组先前报道的一种腈水合酶模型化合物,只是其配体主链中少了一个亚甲基单元。去除这个亚甲基会扭曲几何结构,使S-Fe-N角张开约10度,通过相对于S = 3/2态稳定S = 1/2态来改变磁性,并提高反应活性。通过比较叠氮化物结合的热力学和动力学来评估3和1之间的反应活性差异。在甲醇溶液中,叠氮化物与(Et,Pr)-3和(Pr,Pr)-1都可逆结合。描述甲醇中五配位的1或3与叠氮化物结合的1-N(3)或3-N(3)之间平衡的环境温度K(eq),对于(Et,Pr)体系大约是(Pr,Pr)体系的10倍。在二氯甲烷中,叠氮化物与3的结合速度相对于1快约3倍,在甲醇中,叠氮化物从3-N(3)解离的速度相对于1-N(3)慢1个数量级。结合速率的增加很可能是将3转化为近似八面体结构所需的结构重排减少的结果,或者它们反映了最低未占分子轨道(相对于单占据分子轨道)的轨道占据差异(即自旋态差异)。3-N(3)和1-N(3)的解离速率都比低自旋铁(III)预期的要快得多。最有可能的原因是这些结构中与叠氮化物反位的硫醇盐硫的不稳定作用。