Departamento de Matemáticas & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain.
Departamento de Matemáticas & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain and Instituto de Ingeniería del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Phys Rev Lett. 2014 Oct 31;113(18):180602. doi: 10.1103/PhysRevLett.113.180602. Epub 2014 Oct 30.
We study the dynamics of three-dimensional Fisher fronts in the presence of density fluctuations. To this end we simulate the Fisher equation subject to stochastic internal noise, and study how the front moves and roughens as a function of the number of particles in the system, N. Our results suggest that the macroscopic behavior of the system is driven by the microscopic dynamics at its leading edge where number fluctuations are dominated by rare events. Contrary to naive expectations, the strength of front fluctuations decays extremely slowly as 1/logN, inducing large-scale fluctuations which we find belong to the one-dimensional Kardar-Parisi-Zhang universality class of kinetically rough interfaces. Hence, we find that there is no weak-noise regime for Fisher fronts, even for realistic numbers of particles in macroscopic systems.
我们研究了存在密度涨落时三维费舍尔前沿的动力学。为此,我们模拟了费舍尔方程受到随机内部噪声的影响,并研究了前沿作为系统中粒子数 N 的函数如何移动和粗糙化。我们的结果表明,系统的宏观行为是由其前缘的微观动力学驱动的,在那里,数量涨落主要由稀有事件主导。与天真的预期相反,前沿波动的强度极其缓慢地按 1/logN 衰减,诱导出大尺度波动,我们发现这些波动属于动力学粗糙界面的一维 Kardar-Parisi-Zhang 普适类。因此,我们发现即使在宏观系统中存在实际数量的粒子,费舍尔前沿也没有弱噪声区域。