Suppr超能文献

药物警戒中的信号选择与随访

Signal selection and follow-up in pharmacovigilance.

作者信息

Meyboom Ronald H B, Lindquist Marie, Egberts Antoine C G, Edwards I Ralph

机构信息

The Uppsala Monitoring Centre, Uppsala, Sweden.

出版信息

Drug Saf. 2002;25(6):459-65. doi: 10.2165/00002018-200225060-00011.

Abstract

The detection of unknown and unexpected connections between drug exposure and adverse events is one of the major challenges of pharmacovigilance. For the identification of possible connections in large databases, automated statistical systems have been introduced with promising results. From the large numbers of associations so produced, the human mind has to identify signals that are likely to be important, in need of further assessment and follow-up and that may require regulatory action. Such decisions are based on a variety of clinical, epidemiological, pharmacological and regulatory criteria. Likewise, there are a number of criteria that underlie the subsequent evaluation of such signals. A good understanding of the logic underlying these processes fosters rational pharmacovigilance and efficient drug regulation. In the future a combination of quantitative and qualitative criteria may be incorporated in automated signal detection.

摘要

检测药物暴露与不良事件之间未知和意外的关联是药物警戒的主要挑战之一。为了在大型数据库中识别可能的关联,已引入自动化统计系统并取得了令人鼓舞的成果。从由此产生的大量关联中,人类思维必须识别出可能重要、需要进一步评估和跟进且可能需要监管行动的信号。此类决策基于各种临床、流行病学、药理学和监管标准。同样,在对这些信号的后续评估中也有许多标准作为基础。深入理解这些过程背后的逻辑有助于促进合理的药物警戒和有效的药物监管。未来,定量和定性标准的结合可能会被纳入自动化信号检测中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验