Suppr超能文献

利用语义方法对药物警戒术语进行聚类。

Exploitation of semantic methods to cluster pharmacovigilance terms.

作者信息

Dupuch Marie, Dupuch Laëtitia, Hamon Thierry, Grabar Natalia

机构信息

CNRS UMR 8163 STL; Université Lille 1&3, F-59653 Villeneuve d'Ascq, France ; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris6, UMR_S 872, Paris F-75006, France ; INSERM, U872, Paris F-75006 France.

Université Toulouse III Paul Sabatier, F-31062 Toulouse, France.

出版信息

J Biomed Semantics. 2014 Apr 16;5:18. doi: 10.1186/2041-1480-5-18. eCollection 2014.

Abstract

Pharmacovigilance is the activity related to the collection, analysis and prevention of adverse drug reactions (ADRs) induced by drugs. This activity is usually performed within dedicated databases (national, European, international...), in which the ADRs declared for patients are usually coded with a specific controlled terminology MedDRA (Medical Dictionary for Drug Regulatory Activities). Traditionally, the detection of adverse drug reactions is performed with data mining algorithms, while more recently the groupings of close ADR terms are also being exploited. The Standardized MedDRA Queries (SMQs) have become a standard in pharmacovigilance. They are created manually by international boards of experts with the objective to group together the MedDRA terms related to a given safety topic. Within the MedDRA version 13, 84 SMQs exist, although several important safety topics are not yet covered. The objective of our work is to propose an automatic method for assisting the creation of SMQs using the clustering of semantically close MedDRA terms. The experimented method relies on semantic approaches: semantic distance and similarity algorithms, terminology structuring methods and term clustering. The obtained results indicate that the proposed unsupervised methods appear to be complementary for this task, they can generate subsets of the existing SMQs and make this process systematic and less time consuming.

摘要

药物警戒是与药物引起的不良反应(ADR)的收集、分析和预防相关的活动。这项活动通常在专用数据库(国家、欧洲、国际等)中进行,其中为患者申报的ADR通常使用特定的受控术语MedDRA(药物监管活动医学词典)进行编码。传统上,药物不良反应的检测是通过数据挖掘算法进行的,而最近相近ADR术语的分组也得到了应用。标准化MedDRA查询(SMQ)已成为药物警戒的标准。它们由国际专家委员会手动创建,目的是将与给定安全主题相关的MedDRA术语归为一组。在MedDRA第13版中,有84个SMQ,尽管一些重要的安全主题尚未涵盖。我们工作的目的是提出一种自动方法,通过对语义相近的MedDRA术语进行聚类来辅助创建SMQ。所试验的方法依赖于语义方法:语义距离和相似性算法、术语结构化方法和术语聚类。所得结果表明,所提出的无监督方法似乎对此任务具有互补性,它们可以生成现有SMQ的子集,并使这个过程系统化且耗时更少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/783b/4046518/d0e20050c962/2041-1480-5-18-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验