Côté Colette A, Greer Chris L, Peculis Brenda A
Genetics and Biochemistry Branch, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-1766, USA.
RNA. 2002 Jun;8(6):786-97. doi: 10.1017/s1355838202023063.
Maturation of the large subunit rRNAs includes a series of cleavages that result in removal of the internal transcribed spacer (ITS2) that separates mature 5.8S and 25/28S rRNAs. Previous work demonstrated that formation of higher order secondary structure within the assembling pre-ribosomal particle is a prerequisite for accurate and efficient pre-rRNA processing. To date, it is not clear which specific sequences or secondary structures are required for processing. Two alternative secondary structure models exist for Saccharomyces cerevisiae ITS2. Chemical and enzymatic structure probing and phylogenetic comparisons resulted in one structure (Yeh & Lee, J Mol Biol, 1990, 211:699-712) referred to here as the "hairpin model." More recently, an alternate folded structure was proposed (Joseph et al., Nucleic Acids Res, 1999, 27:4533-4540), called here the "ring model." We have used a functional genetic assay to examine the potential significance of these predicted structures in processing. Our data indicate that elements of both structural models are important in efficient processing. Mutations that prevent formation of ring-specific structures completely blocked production of mature 25S rRNA, whereas those that primarily disrupt hairpin elements resulted in reduced levels of mature product. Based on these results, we propose a dynamic conformational model for the role of ITS2 in processing: Initial formation of the ring structure may be required for essential, early events in processing complex assembly and may be followed by an induced transition to the hairpin structure that facilitates subsequent processing events. In this model, yeast ITS2 elements may provide in cis certain of the functions proposed for vertebrate U8 snoRNA acting in trans.
大亚基核糖体RNA(rRNA)的成熟过程包括一系列切割,这些切割导致将分隔成熟5.8S和25/28S rRNA的内部转录间隔区(ITS2)去除。先前的研究表明,在组装中的核糖体前体颗粒内形成高阶二级结构是准确、高效进行前体rRNA加工的前提条件。迄今为止,尚不清楚加工过程需要哪些特定序列或二级结构。酿酒酵母ITS2存在两种不同的二级结构模型。化学和酶促结构探测以及系统发育比较得出了一种结构(Yeh和Lee,《分子生物学杂志》,1990年,211:699 - 712),这里称为“发夹模型”。最近,有人提出了一种不同的折叠结构(Joseph等人,《核酸研究》,1999年,27:4533 - 4540),这里称为“环模型”。我们使用功能遗传学分析来检验这些预测结构在加工过程中的潜在重要性。我们的数据表明,两种结构模型的元件在高效加工中都很重要。阻止形成环特异性结构的突变完全阻断了成熟25S rRNA的产生,而那些主要破坏发夹元件的突变则导致成熟产物水平降低。基于这些结果,我们提出了一个关于ITS2在加工过程中作用的动态构象模型:环结构的初始形成可能是加工复合体组装中关键早期事件所必需的,随后可能会诱导转变为促进后续加工事件的发夹结构。在这个模型中,酵母ITS2元件可能顺式提供了脊椎动物反式作用的U8小核仁RNA(snoRNA)所具有的某些功能。